首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   382篇
  免费   35篇
  2023年   5篇
  2022年   4篇
  2021年   9篇
  2020年   4篇
  2019年   6篇
  2018年   6篇
  2017年   5篇
  2016年   16篇
  2015年   21篇
  2014年   14篇
  2013年   38篇
  2012年   23篇
  2011年   32篇
  2010年   7篇
  2009年   13篇
  2008年   19篇
  2007年   25篇
  2006年   10篇
  2005年   18篇
  2004年   9篇
  2003年   12篇
  2002年   7篇
  2001年   4篇
  2000年   3篇
  1999年   7篇
  1998年   5篇
  1997年   3篇
  1996年   8篇
  1994年   4篇
  1993年   2篇
  1992年   4篇
  1989年   2篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1982年   2篇
  1980年   2篇
  1976年   2篇
  1975年   2篇
  1915年   2篇
  1897年   2篇
  1883年   3篇
  1882年   5篇
  1881年   2篇
  1880年   1篇
  1879年   6篇
  1878年   2篇
  1877年   2篇
  1876年   1篇
排序方式: 共有417条查询结果,搜索用时 31 毫秒
101.
102.
103.
Chemokine synthesis by airway smooth muscle cells (ASMC) may be an important process underlying inflammatory cell recruitment in airway inflammatory diseases such as asthma and chronic obstructive pulmonary disease (COPD). Fractalkine (FKN) is a recently described CX(3)C chemokine that has dual functions, serving as both a cell adhesion molecule and a chemoattractant for monocytes and T cells, expressing its unique receptor, CX(3)CR1. We investigated FKN expression by human ASMC in response to the proinflammatory cytokines IL-1beta, TNF-alpha, and IFN-gamma, the T helper 2-type cytokines IL-4, IL-10, and IL-13, and the fibrogenic cytokine transforming growth factor (TGF)-beta. Neither of these cytokines alone had any significant effect on ASMC FKN production. Combined stimulation with IFN-gamma and TNF-alpha induced FKN mRNA and protein expression in a time- and concentration-dependent manner. TGF-beta had a significant inhibitory effect on cytokine-induced FKN mRNA and protein expression. Dexamethasone (10(-8)-10(-6) M) significantly upregulated cytokine-induced FKN mRNA and protein expression. Finally, we used selective inhibitors of the mitogen-activated protein kinases c-Jun NH(2)-terminal kinase (JNK) (SP-610025), p38 (SB-203580), and extracellular signal-regulated kinase (PD-98095) to investigate their role in FKN production. SP-610025 (25 microM) and SB-203580 (20 microM), but not PD-98095, significantly attenuated cytokine-induced FKN protein synthesis. IFN-gamma- and TNF-alpha-induced JNK phosphorylation remained unaltered in the presence of TGF-beta but was inhibited by dexamethasone, indicating that JNK is not involved in TGF-beta- or dexamethasone-mediated regulation of FKN production. In summary, FKN production by human ASMC in vitro is regulated by inflammatory and anti-inflammatory factors.  相似文献   
104.
Synthetic oligonucleotides with a fluorescent coumarin group replacing a basepair have been used in recent time-resolved Stokes-shift experiments to measure DNA dynamics on the femtosecond to nanosecond timescales. Here, we show that the APE1 endonuclease cleaves such a modified oligonucleotide at the abasic site opposite the coumarin with only a fourfold reduction in rate. In addition, a noncatalytic mutant (D210N) binds tightly to the same oligonucleotide, albeit with an 85-fold reduction in binding constant relative to a native oligonucleotide containing a guanine opposite the abasic site. Thus, the modified oligonucleotide retains substantial biological activity and serves as a useful model of native DNA. In the complex of the coumarin-containing oligonucleotide and the noncatalytic APE1, the dye's absorption spectrum is shifted relative to its spectrum in either water or within the unbound oligonucleotide. Thus the dye occupies a site within the DNA:protein complex. This result is consistent with modeling, which shows that the complex accommodates coumarin at the site of the orphaned base with little distortion of the native structure. Stokes-shift measurements of the complex show surprisingly little change in the dynamics within the 40 ps-40 ns time range.  相似文献   
105.
106.
107.

Copper oxide nanoparticles (CuO‐NPs) are extensively utilized in several industries and in pharmaceutical production. This excess exposure elevates the concern about its expected poisonous impacts on humans and animals. Pomegranate juice (PJ) is a natural source of polyphenols and exhibits potent antioxidant activities. Our experiment intended to explore the neurobehavioral and toxicopathological impacts of CuO-NPs and to explain the mechanistic role of PJ to reduce their toxicity. Thirty Wistar albino rats received the subsequent materials through oral gavage, every day for 28d: (1) normal saline, (2) 3 mL/kg bwt PJ, (3) 6 mL/kg bwt PJ, (4) 300 mg/kg bwt CuO-NPs, (5) CuO-NPs?+?3 mL/kg bwt PJ, (6) CuO-NPs?+?6 mL/kg bwt PJ. Continuous exposure to CuO-NPs caused a significant elevation of MDA levels and reduction of total antioxidant capacity associated with remarkable pathological alterations in all brain regions including cerebrum, hippocampus and cerebellum. Progressive decline of memory along with cognitive and psychiatric disturbances were observed in rats exposed to CuO-NPs not in PJ co-treated rats. Continuous exposure to CuO-NPs caused over expression of the immunohistochemical markers of caspase-3, iNOS and GFAP altogether with DAN fragmentation and down-regulation of HO-1 and Nrf2 gene in the whole brain tissues. Conversely, rats co-treated with PJ showed dose dependent improvements in the entire toxicological, behavioral, and pathological parameters. We showed that PJ had the ability to reduce the oxidative stress damage via up-regulation of HO-1 and Nrf2 genes in the brain. So that PJ had the ability to protect the brain and DNA from further damage.

  相似文献   
108.
There have been a number of studies conducted in order to compare the efficiencies of recovery rates, utilizing different protocols, for the isolation of L. monocytogenes. However, the severity of multiple cell injury has not been included in these studies. In the current study, L. monocytogenes ATCC 19112 was injured by exposure to extreme temperatures (60°C and -20°C) for a one-step injury, and for a two-step injury the cells were transferred directly from a heat treatment to frozen state to induce a severe cell injury (up to 100% injury). The injured cells were then subjected to the US Food and Drug Administration (FDA), the ISO-11290, and the modified United States Department of Agriculture (mUSDA) protocols, and plated on TSAyeast (0.6% yeast), PALCAM agar, and CHROMAgar Listeria for 24 h or 48 h. The evaluation of the total recovery of injured cells was also calculated based on the costs involved in the preparation of media for each protocol. Results indicate that the mUSDA method is best able to aid the recovery of heat-injured, freeze-injured, and heat-freeze-injured cells and was shown to be the most cost effective for heat-freeze-injured cells.  相似文献   
109.
Worker and queen bees are genetically indistinguishable. However, queen bees are fertile, larger and have a longer lifespan than their female worker counterparts. Differential feeding of larvae with royal jelly controls this caste switching. There is emerging evidence that the queen-bee phenotype is driven by epigenetic mechanisms. In this study, we show that royal jelly--the secretion produced by the hypopharyngeal and mandibular glands of worker bees--has histone deacetylase inhibitor (HDACi) activity. A fatty acid, (E)-10-hydroxy-2-decenoic acid (10HDA), which accounts for up to 5% of royal jelly, harbours this HDACi activity. Furthermore, 10HDA can reactivate the expression of epigenetically silenced genes in mammalian cells. Thus, the epigenetic regulation of queen-bee development is probably driven, in part, by HDACi activity in royal jelly.  相似文献   
110.
The epigenetic impact of DNA methylation in chronic myelogenous leukemia (CML) is not completely understood. To elucidate its role we analyzed 120 patients with CML for methylation of promoter-associated CpG islands of 10 genes. Five genes were identified by DNA methylation screening in the K562 cell line and 3 genes in patients with myeloproliferative neoplasms. The CDKN2B gene was selected for its frequent methylation in myeloid malignancies and ABL1 as the target of BCR-ABL translocation. Thirty patients were imatinib-naïve (mostly treated by interferon-alpha before the imatinib era), 30 were imatinib-responsive, 50 were imatinib-resistant, and 10 were imatinib-intolerant. We quantified DNA methylation by bisulfite pyrosequencing. The average number of methylated genes was 4.5 per patient in the chronic phase, increasing significantly to 6.2 in the accelerated and 6.4 in the blastic phase. Higher numbers of methylated genes were also observed in patients resistant or intolerant to imatinib. These patients also showed almost exclusive methylation of a putative transporter OSCP1. Abnormal methylation of a Src suppressor gene PDLIM4 was associated with shortened survival independently of CML stage and imatinib responsiveness. We conclude that aberrant DNA methylation is associated with CML progression and that DNA methylation could be a marker associated with imatinib resistance. Finally, DNA methylation of PDLIM4 may help identify a subset of CML patients that would benefit from treatment with Src/Abl inhibitors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号