首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   485篇
  免费   65篇
  550篇
  2024年   1篇
  2023年   6篇
  2022年   20篇
  2021年   33篇
  2020年   22篇
  2019年   10篇
  2018年   21篇
  2017年   14篇
  2016年   35篇
  2015年   38篇
  2014年   41篇
  2013年   39篇
  2012年   40篇
  2011年   40篇
  2010年   22篇
  2009年   25篇
  2008年   23篇
  2007年   18篇
  2006年   8篇
  2005年   7篇
  2004年   10篇
  2003年   4篇
  2002年   11篇
  2001年   8篇
  2000年   5篇
  1999年   3篇
  1998年   2篇
  1996年   2篇
  1995年   2篇
  1994年   4篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1985年   2篇
  1984年   3篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1975年   3篇
  1974年   1篇
  1973年   3篇
  1938年   1篇
排序方式: 共有550条查询结果,搜索用时 8 毫秒
141.
The barrier functions of the stratum corneum and the epidermal layers present a tremendous challenge in achieving effective transdermal delivery of drug molecules. Although a few reports have shown that poly(amidoamine) (PAMAM) dendrimers are effective skin-penetration enhancers, little is known regarding the fundamental mechanisms behind the dendrimer-skin interactions. In this Article, we have performed a systematic study to better elucidate how dendrimers interact with skin layers depending on their size and surface groups. Franz diffusion cells and confocal microscopy were employed to observe dendrimer interactions with full-thickness porcine skin samples. We have found that smaller PAMAM dendrimers (generation 2 (G2)) penetrate the skin layers more efficiently than the larger ones (G4). We have also found that G2 PAMAM dendrimers that are surface-modified by either acetylation or carboxylation exhibit increased skin permeation and likely diffuse through an extracellular pathway. In contrast, amine-terminated dendrimers show enhanced cell internalization and skin retention but reduced skin permeation. In addition, conjugation of oleic acid to G2 dendrimers increases their 1-octanol/PBS partition coefficient, resulting in increased skin absorption and retention. Here we report that size, surface charge, and hydrophobicity directly dictate the permeation route and efficiency of dendrimer translocation across the skin layers, providing a design guideline for engineering PAMAM dendrimers as a potential transdermal delivery vector.  相似文献   
142.

Background

Gene set testing has become an important analysis technique in high throughput microarray and next generation sequencing studies for uncovering patterns of differential expression of various biological processes. Often, the large number of gene sets that are tested simultaneously require some sort of multiplicity correction to account for the multiplicity effect. This work provides a substantial computational improvement to an existing familywise error rate controlling multiplicity approach (the Focus Level method) for gene set testing in high throughput microarray and next generation sequencing studies using Gene Ontology graphs, which we call the Short Focus Level.

Results

The Short Focus Level procedure, which performs a shortcut of the full Focus Level procedure, is achieved by extending the reach of graphical weighted Bonferroni testing to closed testing situations where restricted hypotheses are present, such as in the Gene Ontology graphs. The Short Focus Level multiplicity adjustment can perform the full top-down approach of the original Focus Level procedure, overcoming a significant disadvantage of the otherwise powerful Focus Level multiplicity adjustment. The computational and power differences of the Short Focus Level procedure as compared to the original Focus Level procedure are demonstrated both through simulation and using real data.

Conclusions

The Short Focus Level procedure shows a significant increase in computation speed over the original Focus Level procedure (as much as ∼15,000 times faster). The Short Focus Level should be used in place of the Focus Level procedure whenever the logical assumptions of the Gene Ontology graph structure are appropriate for the study objectives and when either no a priori focus level of interest can be specified or the focus level is selected at a higher level of the graph, where the Focus Level procedure is computationally intractable.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-014-0349-3) contains supplementary material, which is available to authorized users.  相似文献   
143.
144.
High‐risk neuroblastoma patients have poor survival rates and require better therapeutic options. High expression of a multifunctional DNA and RNA‐binding protein, NONO, in neuroblastoma is associated with poor patient outcome; however, there is little understanding of the mechanism of NONO‐dependent oncogenic gene regulatory activity in neuroblastoma. Here, we used cell imaging, biochemical and genome‐wide molecular analysis to reveal complex NONO‐dependent regulation of gene expression. NONO forms RNA‐ and DNA‐tethered condensates throughout the nucleus and undergoes phase separation in vitro, modulated by nucleic acid binding. CLIP analyses show that NONO mainly binds to the 5′ end of pre‐mRNAs and modulates pre‐mRNA processing, dependent on its RNA‐binding activity. NONO regulates super‐enhancer‐associated genes, including HAND2 and GATA2. Abrogating NONO RNA binding, or phase separation activity, results in decreased expression of HAND2 and GATA2. Thus, future development of agents that target RNA‐binding activity of NONO may have therapeutic potential in this cancer context.  相似文献   
145.
146.
Neuroblastoma, the most common solid tumour in early childhood, is characterized by very frequent chromosomal copy number variations (CNVs). While chromosome 2p amplification, 17q gain, 1p and 11q deletion in human neuroblastoma tissues are well-known, the exact frequencies and boundaries of the chromosomal CNVs have not been delineated. We analysed the publicly available single nucleotide polymorphism (SNP) array data which were originally generated by the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) initiative, defined the frequencies and boundaries of chromosomes 2p11.2 – 2p25.3 amplification, 17q11.1-17q25.3 gain, 1p13.3-1p36.33 deletion and 11q13.3-11q25 deletion in neuroblastoma tissues, and identified chromosome 7q14.1 (Chr7:38254795-38346971) and chromosome 14q11.2 (Chr14:21637401-22024617) deletion in blood and bone marrow samples from neuroblastoma patients, but not in tumour tissues. Kaplan Meier analysis showed that double deletion of Chr7q14.1 and Chr14q11.2 correlated with poor prognosis in MYCN gene amplified neuroblastoma patients. In conclusion, the oncogenes amplified or gained and tumour suppressor genes deleted within the boundaries of chromosomal CNVs in tumour tissues should be studied for their roles in tumourigenesis and as therapeutic targets. Focal deletions of Chr7q14.1 and Chr14q11.2 together in blood and bone marrow samples from neuroblastoma patients can be used as a marker for poorer prognosis and more aggressive therapies.  相似文献   
147.
148.
149.
Ras GTPases are signaling switches that control critical cellular processes including gene expression, differentiation, and apoptosis. The major Ras isoforms (K, H, and N) contain a conserved core GTPase domain, but have distinct biological functions. Among the three Ras isoforms there are clear differences in post-translational regulation, which contribute to differences in localization and signaling output. Modification by ubiquitination was recently reported to activate Ras signaling in cells, but the mechanisms of activation are not well understood. Here, we show that H-Ras is activated by monoubiquitination and that ubiquitination at Lys-117 accelerates intrinsic nucleotide exchange, thereby promoting GTP loading. This mechanism of Ras activation is distinct from K-Ras monoubiquitination at Lys-147, which leads to impaired regulator-mediated GTP hydrolysis. These findings reveal that different Ras isoforms are monoubiquitinated at distinct sites, with distinct mechanisms of action, but with a common ability to chronically activate the protein in the absence of a receptor signal or oncogenic mutation.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号