首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1429篇
  免费   132篇
  国内免费   2篇
  1563篇
  2021年   16篇
  2020年   10篇
  2019年   11篇
  2018年   15篇
  2017年   11篇
  2016年   12篇
  2015年   37篇
  2014年   47篇
  2013年   53篇
  2012年   75篇
  2011年   67篇
  2010年   36篇
  2009年   29篇
  2008年   54篇
  2007年   54篇
  2006年   44篇
  2005年   48篇
  2004年   40篇
  2003年   49篇
  2002年   53篇
  2001年   43篇
  2000年   38篇
  1999年   35篇
  1998年   25篇
  1997年   16篇
  1996年   16篇
  1995年   26篇
  1994年   20篇
  1993年   21篇
  1992年   44篇
  1991年   32篇
  1990年   48篇
  1989年   34篇
  1988年   30篇
  1987年   36篇
  1986年   32篇
  1985年   33篇
  1984年   19篇
  1983年   20篇
  1982年   17篇
  1981年   32篇
  1980年   9篇
  1979年   22篇
  1977年   9篇
  1975年   13篇
  1974年   14篇
  1972年   13篇
  1971年   11篇
  1969年   8篇
  1968年   12篇
排序方式: 共有1563条查询结果,搜索用时 15 毫秒
51.
52.
53.
Inhibiting the synthesis of endogenous prostaglandins with nonsteroidal anti-inflammatory drugs exacerbates arterial hypertension. We hypothesized that the converse, i.e., raising the level of endogenous prostaglandins, might have anti-hypertensive effects. To accomplish this, we focused on inhibiting the prostaglandin transporter PGT (SLCO2A1), which is the obligatory first step in the inactivation of several common PGs. We first examined the role of PGT in controlling arterial blood pressure blood pressure using anesthetized rats. The high-affinity PGT inhibitor T26A sensitized the ability of exogenous PGE2 to lower blood pressure, confirming both inhibition of PGT by T26A and the vasodepressor action of PGE2 T26A administered alone to anesthetized rats dose-dependently lowered blood pressure, and did so to a greater degree in spontaneously hypertensive rats than in Wistar-Kyoto control rats. In mice, T26A added chronically to the drinking water increased the urinary excretion and plasma concentration of PGE2 over several days, confirming that T26A is orally active in antagonizing PGT. T26A given orally to hypertensive mice normalized blood pressure. T26A increased urinary sodium excretion in mice and, when added to the medium bathing isolated mouse aortas, T26A increased the net release of PGE2 induced by arachidonic acid, inhibited serotonin-induced vasoconstriction, and potentiated vasodilation induced by exogenous PGE2. We conclude that pharmacologically inhibiting PGT-mediated prostaglandin metabolism lowers blood pressure, probably by prostaglandin-induced natriuresis and vasodilation. PGT is a novel therapeutic target for treating hypertension.  相似文献   
54.
An improved method for the isolation of a double-strand-specific RNase from snake venom is presented. This RNase, called CSV, was used to cleave yeast tRNAPhe and tRNA2Glu and tRNAfMet from Escherichia coli. In addition these RNAs and E. coli tRNAPhe were examined with the single-strand-specific nuclease S1. The results are discussed in terms of the specificity of CSV RNase and the structure of tRNAs. S1 nuclease digestions at increasing temperatures allowed the melting of tertiary and secondary structure to be monitored. 5S rRNA from E. coli, Thermoplasma acidophilum and the chloroplasts of Spinacia oleracea were digested with CSV and S1. The information these results give on the secondary-structural differences between different classes of 5S rRNA are discussed. Supporting evidence is found for tertiary interactions between hairpin loop c and internal loop d of eubacterial 5S rRNA.  相似文献   
55.
Stable synthesis of the hexagonally ordered (p6) S-layer protein from the wild-type strain of Bacillus stearothermophilus PV72 could be achieved in continuous culture on complex medium only under oxygen-limited conditions when glucose was used as the sole carbon source. Depending on the adaptation of the wild-type strain to low oxygen supply, the dynamics in oxygen-induced changes in S-layer protein synthesis was different when the rate of aeration was increased to a level that allowed dissimilation of amino acids. If oxygen supply was increased at the beginning of continuous culture, synthesis of the p6 S-layer protein from the wild-type strain (encoded by the sbsA gene) was immediately stopped and replaced by that of a new type of S-layer protein (encoded by the sbsB gene) which assembled into an oblique (p2) lattice. In cells adapted to a prolonged low oxygen supply, first, low-level p2 S-layer protein synthesis and second, synchronous synthesis of comparable amounts of both types of S-layer proteins could be induced by stepwise increasing the rate of aeration. The time course of changes in S-layer protein synthesis was followed up by immunogold labelling of whole cells. Synthesis of the p2 S-layer protein could also be induced in the p6-deficient variant T5. Hybridization data obtained by applying the radiolabelled N-terminal and C-terminal sbsA fragments and the N-terminal sbsB fragment to the genomic DNA of all the three organisms indicated that changes in S-layer protein synthesis were accompanied by chromosomal rearrangement. Chemical analysis of peptidoglycan-containing sacculi and extraction and recrystallization experiments revealed that at least for the wild-type strain, a cell wall polymer consisting of N-acetylglucosamine and glucose is responsible for binding of the p6 S-layer protein to the rigid cell wall layer.  相似文献   
56.
The composition and structural aspects of the amino and carboxylic acid groups required for incorporation into peptides by transpeptidation and inhibition of hydrolysis in carboxypeptidase Y-catalyzed reactions were studied. Separation of these two groups by even one carbon prevents incorporation by transpeptidation and does not inhibit incorporation of other amino acids into model peptides. Substitution of phosphonic or sulfonic acids for the carboxylic acid group also results in loss of incorporation by transpeptidation. Only the sulfonic acid analog of glycine causes inhibition of hydrolysis and this inhibition is lost when serine is included in the reaction. d-Serine is not incorporated by carboxypeptidase Y, and its presence in the reaction mixture does not inhibit the incorporation of the L-isomer.  相似文献   
57.
BACKGROUND AND AIMS: Witches' broom disease is caused by the hemibiotrophic basidiomycete Moniliophthora perniciosa, and is one of the most important diseases of cacao in the western hemisphere. Because very little is known about the global process of such disease development, expressed sequence tags (ESTs) were used to identify genes expressed during the Theobroma cacao-Moniliophthora perniciosa interaction. METHODS: Two cDNA libraries corresponding to the resistant (RT) and susceptible (SP) cacao-M. perniciosa interactions were constructed from total RNA, using the DB SMART Creator cDNA library kit (Clontech). Clones were randomly selected, sequenced from the 5' end and analysed using bioinformatics tools including in silico analysis of the differential gene expression. KEY RESULTS: A total of 6884 ESTs were generated from the RT and SP cDNA libraries. These ESTs were composed of 2585 singlets and 341 contigs for a total of 2926 non-redundant sequences. The redundancy of the libraries was low and their specificity high when compared with the few other cacao libraries already published. Sequence analysis allowed the assignment of a putative functional category for 54 % of sequences, whereas approx. 22 % of sequences corresponded to unknown function and approx. 24 % of sequences did not show any significant similarity with other proteins present in the database. Despite the similar overall distribution of the sequences in functional categories between the two libraries, qualitative differences were observed. Genes involved during the defence response to pathogen infection or in programmed cell death were identified, such as pathogenesis related-proteins, trypsin inhibitor or oxalate oxidase, and some of them showed an in silico differential expression between the resistant and the susceptible interactions. CONCLUSIONS: As far as is known this is the first EST resource from the cacao-M. perniciosa interaction and it is believed that it will provide a significant contribution to the understanding of the molecular mechanisms of the resistance and susceptibility of cacao to M. perniciosa, to develop strategies to control witches' broom, and as a source of polymorphism for molecular marker development and marker-assisted selection.  相似文献   
58.
The production of reactive oxygen species (ROS) is central to the etiology of endothelial dysfunction in sepsis. Endothelial cells respond to infection by activating NADPH oxidases that are sources of intracellular ROS and potential targets for therapeutic administration of antioxidants. Ascorbate is an antioxidant that accumulates in these cells and improves capillary blood flow, vascular reactivity, arterial blood pressure, and survival in experimental sepsis. Therefore, the present study tested the hypothesis that ascorbate regulates NADPH oxidases in microvascular endothelial cells exposed to septic insult. We observed that incubation with Escherichia coli lipopolysaccharide (LPS) and interferon-gamma (IFNgamma) increased NADPH oxidase activity and expression of the enzyme subunit p47phox in mouse microvascular endothelial cells of skeletal muscle origin. Pretreatment of the cells with ascorbate prevented these increases. Polyethylene glycol-conjugated catalase and selective inhibitors of Jak2 also abrogated induction of p47phox. Exogenous hydrogen peroxide induced p47phox expression that was prevented by pretreatment of the cells with ascorbate. LPS+IFNgamma or hydrogen peroxide activated the Jak2/Stat1/IRF1 pathway and this effect was also inhibited by ascorbate. In conclusion, ascorbate blocks the stimulation by septic insult of redox-sensitive Jak2/Stat1/IRF1 signaling, p47phox expression, and NADPH oxidase activity in microvascular endothelial cells. Because endothelial NADPH oxidases produce ROS that can cause endothelial dysfunction, their inhibition by ascorbate may represent a new strategy for sepsis therapy.  相似文献   
59.
Background: The outer core region of Hpylori lipopolysaccharide (LPS) contains α1,6‐glucan previously shown to contribute to colonizing efficiency of a mouse stomach. The aim of the present study was to generate monoclonal antibodies (mAbs) specific for α1,6‐glucan and characterize their binding properties and functional activity. Materials and Methods: BALB/c mice were injected intraperitoneally with 108 formalin‐fixed H. pylori O:3 0826::Kan cells 3× over 56 days to achieve significant titer. Anti‐α1,6‐glucan‐producing hybridomas were screened by indirect ELISA using purified H. pylori O:3 0826::Kan LPS. One clone, 1C4F9, was selected for further characterization. The specificities of mAbs were determined by indirect and inhibition ELISA using structurally defined H. pylori LPS and synthetic oligosaccharides, and whole‐cell indirect ELISA (WCE) of clinical isolates. They were further characterized by indirect immunofluorescent (IF) microscopy and their functional activity in vitro determined by serum bactericidal assays against wild‐type and mutant strains of H. pylori. Results: The generated anti‐α1,6‐glucan IgM, 1C4F9, has demonstrated an excellent specificity for the glucan chain containing 5 to 6 α1,6‐linked glucose residues and showed surface accessibility by IF microscopy with H. pylori cells adherent to gastric adenocarcinoma cells monolayers. Of 38 isolates from Chile, 17 strains reacted with antiglucan mAbs in WCE (OD450 ≥ 0.2). Bactericidal activity was observed against selective wild‐type and mutant H. pylori strains exhibiting OD450 values of ≥0.45 in WCE. Conclusions: Anti‐α1,6‐glucan mAbs could have potential application in typing and surveillance of H. pylori isolates as well as offer insights into structural requirements for the development of LPS‐based vaccine against H. pylori infections.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号