首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143篇
  免费   8篇
  2022年   2篇
  2016年   1篇
  2014年   2篇
  2013年   4篇
  2012年   4篇
  2011年   11篇
  2010年   3篇
  2009年   7篇
  2008年   6篇
  2007年   6篇
  2006年   11篇
  2005年   4篇
  2004年   5篇
  2003年   3篇
  2002年   8篇
  2001年   4篇
  2000年   8篇
  1999年   5篇
  1998年   6篇
  1997年   2篇
  1996年   5篇
  1995年   2篇
  1994年   4篇
  1993年   8篇
  1992年   4篇
  1990年   1篇
  1989年   3篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   4篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
排序方式: 共有151条查询结果,搜索用时 15 毫秒
41.
Structural properties and thermal stability of Trichoderma reesei endo-1,4-beta-xylanase II (TRX II) and its three recombinant mutants were characterized using electrospray ionization Fourier transform ion cyclotron resonance (ESI FT-ICR) mass spectrometry and hydrogen/deuterium (H/D) exchange reactions. TRX II has been previously stabilized by a disulfide bridge C110-C154 and other site-directed mutations (TRX II mutants DS2 and DS5). Very recently, a highly thermostable mutant was introduced by combining mutations of DS5 with an N-terminal disulfide bridge C2-C28 (mutant DB1). Accurate mass measurements of TRX II, DS2, DS5, and DB1 verified the expected DNA-encoded protein sequences (average mass error 1.3 ppm) and allowed unequivocal assignment of the disulfides without chemical reduction and subsequent alkylation of the expected cross-links. Moreover, H/D exchange reactions provided means for the detection of a major heat-induced conformational change comprising two interconverting conformers of very different H/D exchange rates as well as allowed the apparent melting temperatures (T(m)) to be determined (62.6, 65.1, 68.0, and 82.2 degrees C for TRX II, DS2, DS5, and DB1, respectively). Residual activity measurements verified that the enzymes inactivated at significantly lower temperatures than expected on the basis of the apparent T(m) values, strongly suggesting that the inactivation takes place through minor conformational change other than observed by H/D exchange. ESI FT-ICR analyses also revealed molecular heterogeneity in DS5 and DB1 due to the propeptide incorporation. Resulting unintentional N-terminal extensions were observed to further improve the stability of the DB1 mutant. The extension of six amino acid residues upstream from the protein N-terminus increased stability by approximately 5 degrees C.  相似文献   
42.
A highly selective, high affinity recombinant anti-testosterone Fab fragment has been generated by stepwise optimization of the complementarity-determining regions (CDRs) by random mutagenesis and phage display selection of a monoclonal antibody (3-C(4)F(5)). The best mutant (77 Fab) was obtained by evaluating the additivity effects of different independently selected CDR mutations. The 77 Fab contains 20 mutations and has about 40-fold increased affinity (K(d) = 3 x 10(-10) m) when compared with the wild-type (3-C(4)F(5)) Fab. To obtain structural insight into factors, which are needed to improve binding properties, we have determined the crystal structures of the mutant 77 Fab fragment with (2.15 A) and without testosterone (2.10 A) and compared these with previously determined wild-type structures. The overall testosterone binding of the 77 Fab is similar to that of the wild-type. The improved affinity and specificity of the 77 Fab fragment are due to more comprehensive packing of the testosterone with the protein, which is the result of small structural changes within the variable domains. Only one important binding site residue Glu-95 of the heavy chain CDR3 is mutated to alanine in the 77 Fab fragment. This mutation, originally selected from the phage library based on improved specificity, provides more free space for the testosterone D-ring. The light chain CDR1 of 77 Fab containing eight mutations has the most significant effect on the improved affinity, although it has no direct contact with the testosterone. The mutations of CDR-L1 cause a rearrangement in its conformation, leading to an overall fine reshaping of the binding site.  相似文献   
43.
Disappearance of E-cadherin is a milestone for epithelial-mesenchymal transition (EMT), found both in carcinomas and in some fibrotic diseases. We have studied the mechanisms of EMT in oral squamous cell carcinoma (SCC) cells isolated from primary tumor (43A) and its recurrent tumor (43B). Whereas the cells from primary carcinoma displayed a typical phenotype of squamous epithelial cells including E-cadherin and laminin-332 (laminin-5), cells from recurrent tumor expressed characteristics of dedifferentiated, EMT-experienced tumors. 43B cells expressed E-cadherin repressors ZEB-1/deltaEF1 and especially ZEB-2/SIP1, which therefore appear as candidates for endogenous EMT in these cells. Differences between endogenous and exogenous EMT were assessed by transfecting 43A cells with SNAIL cDNA. SNAIL-transfected cells showed complete EMT phenotype with fibroblastoid appearance, vimentin filaments, E-cadherin/N-cadherin switch, lack of hemidesmosomes and, as a new feature of EMT, lack of laminin-332 synthesis. Upregulation of ZEB-1 and ZEB-2 was evident in these cells, suggesting that SNAIL can regulate these E-cadherin repressors. New monoclonal antibodies against SNAIL showed nuclear immunoreactivity not only in the SNAIL-transfected cells but also in carcinoma cells lacking production of Lm-332 and showing signs of EMT. These results suggest that changes in the epithelial cell differentiation program and EMT in SCC cells can result from the interplay among several E-cadherin repressors; however, SNAIL alone is able to accomplish a complete EMT.  相似文献   
44.
Summary Eleven different fluorescent lectin-conjugates were used to reveal the location of carbohydrate residues in frozen sections of the anterior segment of bovine eyes. The lectins were specific for the following five major carbohydrate groups: (1) glucose/mannose group (Concanavalin A (Con A)); (2)N-acetylglucosamine group (wheat germ agglutinin (WGA)); (3) galactose/N-acetylgalactosamine group (Dolichos biflorus agglutinin (DBA),Helix pomatia agglutinin (HPA),Helix aspersa agglutinin (HAA),Psophocarpus tetragonolobus agglutinin (PTA),Griffonia simplicifolia agglutinin-I-B4 (GSA-I-B4),Artocarpus integrifolia agglutinin (JAC), peanut agglutinin (PNA) andRicinus communis agglutinin (RCA-I)); (4)l-fucose group (Ukex europaeus agglutinin (UEA-I)); (5) sialic acid group (wheat germ agglutinin (WGA)). All the studied lectins except UEA-I reacted widely with different structures and the results suggest that there are distinct patterns of expression of carbohydrate residues in the anterior segment of the bovine eye. UEA-I bound only to epithelial structures. Some of the lectins reacted very intensely with apical cell surfaces of conjunctival and corneal epithelia suggesting a different glycosylation at the glycocalyx of the epithelia. Also, the binding patterns of conjunctival and corneal epithelia differed with some of the lectins: PNA and RCA-I did not bind at all, and GSA-I-B4 bound only very weakly to the epithelium of the cornea, whereas they bound to the epithelium of the conjunctiva. In addition, HPA, HAA, PNA and WGA did not bind to the corneal basement membrane, but bound to the conjunctiva and vascular basement membranes. This suggests that corneal basement membrane is somehow different from other basement membranes. Lectins with the same carbohydrate specificity (DBA, HPA, HAA and PTA) reacted with the sections almost identically, but some differences were noticed: DBA did not bind to the basement membrane of the conjunctiva and the sclera and did bind to the basement membrane of the cornea, whereas other lectins with same carbohydrate specificities reacted vice versa. Also, the binding of PTA to the trabecular meshwork was negligible, whereas other lectins with the same carbohydrate specificities reacted with the trabecular meshwork. GSA-I-B4 reacted avidly with the endothelium of blood vessels and did not bind to the stroma, so that it made blood vessels very prominent and it might be used as an endothelial marker. This lectin also reacted avidly with the corneal endothelium. Therefore, GSA-I-B4 appears to be a specific marker in bovine tissues for both blood vessel and corneal endothelium cells.  相似文献   
45.
Summary The internalization of the extracellular markers horseradish peroxidase (HRP) and cationized ferritin (CF) by the melanotrophs of the intermediate lobe of the rat pituitary was studied during short-time incubation of mechanically dissociated cells or in cell culture after 5 days. After a 30 min exposure, the tracers were found in electron-lucent granules or vacuoles of approximately the same size as the secretory granules, situated 200–500 nm from the cell membrane. In the cultured cells, which showed a higher rate of tracer uptake, internalization was followed for 1, 2 and 5 min after labelling and during 2 h of exposure. Initially, the label was seen only in coated pits and coated vesicles at the cell membrane. Larger vacuoles were first seen after 2–5 min of incubation. After 2 h of exposure the labelling pattern was distinctly different for the two tracers. CF was found in larger vacuoles of varying morphology, in dilatations at the base of cilia, within Golgi saccules and at the edge of the electron-dense core of forming secretory granules. HRP was found in an extensive array of tubulovesicular structures extending throughout the cytoplasm. The Golgi complex and forming granules were, however, not labelled with HRP. The study identifies part of the electron-lucent granules or vacuoles in the melanotroph as endosomes, and shows that the melanotrophs sort CF and HRP via diverting pathways after internalization, suggesting that granule membrane, and possibly its functional components, can be recycled in these cells.  相似文献   
46.
Aspartylglucosaminidase (AGA) is a lysosomal asparaginase that takes part in the ordered degradation of glycoproteins and a deficiency of which results in a lysosomal accumulation disease aspartylglucosaminuria in human. The mature enzyme consists of 24-kDa and 17-kDa subunits, which are both heterogeneously glycosylated. Activation of the enzyme from a single precursor polypeptide into two subunits is accomplished in the endoplasmic reticulum (ER). The relative lack of this proteolytic capacity in several tested high-producing expression systems has complicated the production of active recombinant enzyme in high quantities, which would be an alternative for purification of this molecule for crystallization. Consequently, the AGA enzyme has to be purified directly from cellular or tissue sources for crystallographic analysis. Here we describe a large-scale purification method to produce milligram amounts of homogeneous AGA from human leukocytes. The purified AGA enzyme represents a heterogeneous pool of molecules not only due to glycosylation, but also heterogeneity at the polypeptide level, as demonstrated here. We were able to isolate a homogeneous polypeptide pool that was successfully crystallized and preliminary X-ray data collected from the crystals. The crystals diffract well to 2.0 Å and are thus suitable for determination of the crystal structure of AGA.  相似文献   
47.
The B-subunits associated with the replicative DNA polymerases are conserved from Archaea to humans, whereas the corresponding catalytic subunits are not related. The latter belong to the B and D DNA polymerase families in eukaryotes and archaea, respectively. Sequence analysis places the B-subunits within the calcineurin-like phosphoesterase superfamily. Since residues implicated in metal binding and catalysis are well conserved in archaeal family D DNA polymerases, it has been hypothesized that the B-subunit could be responsible for the 3′-5′ proofreading exonuclease activity of these enzymes. To test this hypothesis we expressed Methanococcus jannaschii DP1 (MjaDP1), the B-subunit of DNA polymerase D, in Escherichia coli, and demonstrate that MjaDP1 functions alone as a moderately active, thermostable, Mn2+-dependent 3′-5′ exonuclease. The putative polymerase subunit DP2 is not required. The nuclease activity is strongly reduced by single amino acid mutations in the phosphoesterase domain indicating the requirement of this domain for the activity. MjaDP1 acts as a unidirectional, non-processive exonuclease preferring mispaired nucleotides and single-stranded DNA, suggesting that MjaDP1 functions as the proofreading exonuclease of archaeal family D DNA polymerase.  相似文献   
48.
X-Ray crystal structures have revealed that 2, 3-epoxypropyl-beta-D-xyloside reacts with endo-1,4-beta-xylanase (XYNII) by forming a covalent bond with Glu86. In contrast, 3, 4-epoxybutyl-beta-D-xyloside forms a covalent bond with Glu177. In the normal enzyme reaction Glu86 acts as the catalytic nucleophile and Glu177 as the acid/base catalyst. To rationalize the observed reactivity of the two mechanism-based inhibitors, we carried out eight 300 ps molecular dynamics simulations for different enzyme-inhibitor complexes. Simulations were done for both stereo isomers (R and S) of the inhibitors and for enzyme in which the protonation state of the nucleophile and acid/base catalyst was normal (Glu86 charged, Glu177 neutral) and in which the roles of the catalytic residues were reversed (Glu86 neutral, Glu177 charged). The number of reactive conformations found in each simulation was used to predict the reactivity of epoxy inhibitors. The conformation was considered to be a reactive one when at the same time (i) the proton of the catalytic acid was close (<2.9/3.4/3.9 A) to the oxirane oxygen of the inhibitor, (ii) the nucleophile was close to the terminal carbon of the oxirane group (<3.4/3.9/4.4 A) and (iii) the nucleophile approached the terminal carbon from a reactive angle (<30/45/60 degrees from an ideal attack angle). On the basis of the number of reactive conformations, 2,3-epoxypropyl-beta-D-xyloside was predicted to form a covalent bond with Glu86 and 3, 4-epoxybutyl-beta-D-xyloside with Glu177, both in agreement with the experiment. Thus, the MD simulations and the X-ray structures indicate that in the covalent binding of 3, 4-epoxybutyl-beta-D-xyloside the roles of the catalytic glutamates of XYNII are reversed from that of the normal enzyme reaction.  相似文献   
49.
The tooth pulp innervation originates from the trigeminal ganglion (TG) and represents an illustrative example of tissue targeting by sensory nerves. Pulpal fibroblasts strongly promote neurite outgrowth from TG neurons in vitro. In the present study, we have investigated the possible participation of laminins (LNs), potent neuritogenic extracellular matrix components. Immunohistochemistry of human tooth pulp demonstrated expression of LN alpha1, alpha2, alpha4, alpha5, beta1 and gamma1, and laminin-binding integrin alpha3, alpha6, beta1 and beta4 chains in nerves. Though faintly stained for laminins in situ, pulpal fibroblasts reacted, once cultured and permeabilized, with antibodies to LN alpha2, alpha4, beta1 and gamma1 chains by flow cytometry. The cells also expressed the corresponding mRNAs and were able to assemble and secrete LN-2 (alpha2beta1gamma1, Lm-211) and LN-8 (alpha4beta1gamma1, Lm-411). LN-8 displayed a chondroitin sulphate (CS) modification in its alpha4 chain. In functional assays, mouse LN-1 (alpha1beta1gamma1, Lm-111) and recombinant human (rh) LN-8, but not native or rhLN-2, strongly promoted neurite outgrowth from TG neurons, mimicking the effect of cultured pulp fibroblast. Altogether, the results indicate that LN-2 and LN-8 are synthesized by tooth pulp fibroblasts and differentially promote neurite outgrowth from TG neurons. LN-8 may contribute to sensory innervation of teeth and other tissues during development and/or regeneration.  相似文献   
50.
Laminins assemble into trimers composed of α, β, and γ chains which posttranslationally are glycosylated and sometimes proteolytically cleaved. In the current paper we set out to characterize posttranslational modifications and the laminin isoforms formed by laminin α1 and α5 chains. Comparative pulse–chase experiments and deglycosylation studies in JAR cells established that the Mr 360,000 laminin α1 chain is glycosylated into a mature Mr 400,000 band while the Mr 370,000 laminin α5 chain is glycosylated into a Mr 390,000 form that upon secretion is further processed into a Mr 380,000 form. Hence, despite the shorter peptide length of α1 chain in comparison with the α5 chain, secreted α1 assumes a larger size in SDS–PAGE due to a higher degree of N-linked glycosylation and due to the lack of proteolytic processing. Immunoprecipitations and Western blotting of JAR laminins identified laminin α1 and laminin α5 chains in laminin-1 and laminin-10. In placenta laminin α1 chain (Mr 400,000) and laminin α5 chain (Mr 380,000/370,000 doublet) were found in laminin-1/-3 and laminin-10/-11. Immunohistochemically we could establish that the laminin α1 chain in placenta is deposited in the developing villous and trophoblast basement membrane, also found to contain laminin β2 chains. Surprisingly, a fraction of the laminin α1 chain from JAR cells and placenta could not be precipitated by antibodies to laminin β1–β3 chains, possibly pointing to an unexpected complexity in the chain composition of α1-containing laminin isoforms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号