首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   176篇
  免费   12篇
  2021年   1篇
  2017年   7篇
  2016年   2篇
  2015年   2篇
  2014年   9篇
  2013年   9篇
  2012年   5篇
  2011年   8篇
  2010年   7篇
  2009年   11篇
  2008年   6篇
  2007年   12篇
  2006年   11篇
  2005年   10篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   4篇
  2000年   4篇
  1999年   2篇
  1998年   10篇
  1997年   4篇
  1996年   4篇
  1995年   8篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1981年   5篇
  1980年   2篇
  1979年   1篇
  1977年   3篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1972年   1篇
  1971年   1篇
  1968年   1篇
排序方式: 共有188条查询结果,搜索用时 15 毫秒
101.
Nitrous oxide (N2O) fluxes from soil under mown grassland were monitored using static chambers over three growing seasons in intensively and extensively managed systems in Central Switzerland. Emissions were largest following the application of mineral (NH4NO3) fertilizer, but there were also substantial emissions following cattle slurry application, after grass cuts and during the thawing of frozen soil. Continuous flux sampling, using automatic chambers, showed marked diurnal patterns in N2O fluxes during emission peaks, with highest values in the afternoon. Net uptake fluxes of N2O and subambient N2O concentrations in soil open pore space were frequently measured on both fields. Flux integration over 2.5 years yields a cumulated emission of +4.7 kgN2O‐N ha?1 for the intensively managed field, equivalent to an average emission factor of 1.1%, and a small net sink activity of ?0.4 kg N2O‐N ha?1 for the unfertilized system. The data suggest the existence of a consumption mechanism for N2O in dry, areated soil conditions, which cannot be explained by conventional anaerobic denitrification. The effect of fertilization on greenhouse gas budgets of grassland at the ecosystem level is discussed.  相似文献   
102.
We found a two-fold increase in the productivity of baker’s yeast grown on a nutrient mixture prepared in light water with a D2O content (127 ppm) smaller than in the distilled water (150 ppm). The number of water monomers that provides the biosynthetic activity (water transport through membrane channels) of yeast cells with an increased CO2 yield was determined for the first time. We established that the selectivity of cell membrane channels in water of different composition depends not only on the motion of ortho-and para-spin H2O isomers in solution, as was shown earlier, but also on the concentration of D2O.  相似文献   
103.
Melanoma differentiation‐associated protein 5 (MDA5) mediates the innate immune response to viral infection. Polymorphisms in IFIH1, the gene coding for MDA5, correlate with the risk of developing type 1 diabetes (T1D). Here, we demonstrate that MDA5 is crucial for the immune response to enteric rotavirus infection, a proposed etiological agent for T1D. MDA5 variants encoded by minor IFIH1 alleles associated with lower T1D risk exhibit reduced activity against rotavirus infection. We find that MDA5 activity limits rotavirus infection not only through the induction of antiviral interferons and pro‐inflammatory cytokines, but also by promoting cell death. Importantly, this MDA5‐dependent antiviral response is specific to the pancreas of rotavirus‐infected mice, similar to the autoimmunity associated with T1D. These findings imply that MDA5‐induced cell death and inflammation in the pancreas facilitate progression to autoimmune destruction of pancreatic β‐cells.  相似文献   
104.
Interleukin-11 (IL-11) is a hematopoietic cytokine engaged in numerous biological processes and validated as a target for treatment of various cancers. IL-11 contains intrinsically disordered regions that might recognize multiple targets. Recently we found that aside from IL-11RA and gp130 receptors, IL-11 interacts with calcium sensor protein S100P. Strict calcium dependence of this interaction suggests a possibility of IL-11 interaction with other calcium sensor proteins. Here we probed specificity of IL-11 to calcium-binding proteins of various types: calcium sensors of the EF-hand family (calmodulin, S100B and neuronal calcium sensors: recoverin, NCS-1, GCAP-1, GCAP-2), calcium buffers of the EF-hand family (S100G, oncomodulin), and a non-EF-hand calcium buffer (α-lactalbumin). A specific subset of the calcium sensor proteins (calmodulin, S100B, NCS-1, GCAP-1/2) exhibits metal-dependent binding of IL-11 with dissociation constants of 1–19 μM. These proteins share several amino acid residues belonging to conservative structural motifs of the EF-hand proteins, ‘black’ and ‘gray’ clusters. Replacements of the respective S100P residues by alanine drastically decrease its affinity to IL-11, suggesting their involvement into the association process. Secondary structure and accessibility of the hinge region of the EF-hand proteins studied are predicted to control specificity and selectivity of their binding to IL-11. The IL-11 interaction with the EF-hand proteins is expected to occur under numerous pathological conditions, accompanied by disintegration of plasma membrane and efflux of cellular components into the extracellular milieu.  相似文献   
105.
These studies provide evidence that cystic fibrosis transmembrane conductance regulator (CFTR) potentiates and accelerates regulatory volume decrease (RVD) following hypotonic challenge by an autocrine mechanism involving ATP release and signaling. In wild-type CFTR-expressing cells, CFTR augments constitutive ATP release and enhances ATP release stimulated by hypotonic challenge. CFTR itself does not appear to conduct ATP. Instead, ATP is released by a separate channel, whose activity is potentiated by CFTR. Blockade of ATP release by ion channel blocking drugs, gadolinium chloride (Gd(3+)) and 4,4'-diisothiocyanatostilbene-2,2'disulfonic acid (DIDS), attenuated the effects of CFTR on acceleration and potentiation of RVD. These results support a key role for extracellular ATP and autocrine and paracrine purinergic signaling in the regulation of membrane ion permeability and suggest that CFTR potentiates ATP release by stimulating a separate ATP channel to strengthen autocrine control of cell volume regulation.  相似文献   
106.
The mechanism by which the cytoskeletal protein actin affects the conductance of amiloride-sensitive epithelial sodium channels (ENaC) was studied in planar lipid bilayers. In the presence of monomeric actin, we found a decrease in the single-channel conductance of alpha-ENaC that did not occur when the internal [Ca2+]free was buffered to <10 nM. An analysis of single-channel kinetics demonstrated that Ca2+ induced the appearance of long-lived closed intervals separating bursts of channel activity, both in the presence and in the absence of actin. In the absence of actin, the duration of these bursts and the time spent by the channel in its open, but not in its short-lived closed state, were inversely proportional to [Ca2+]. This, together with a lengthening of the interburst intervals, translated into a dose-dependent decrease in the single-channel open probability. In contrast, a [Ca2+]-dependent decrease in alpha-ENaC conductance in the presence of actin was accompanied by lengthening of the burst intervals with no significant changes in the open or closed (both short- and long-lived) times. We conclude that Ca2+ acts as a "fast-to-intermediate" blocker when monomeric actin is present, producing a subsequent attenuation of the apparent unitary conductance of the channel.  相似文献   
107.
The bioluminescent activity of intact Vibrio harveyi cells loaded with different concentrations of NaCl and KCl at different pH values was studied. In the pH range of 6.5-8.5, the effect of Na+ was significantly higher than that of K+ at all concentrations studied. Maximum luminescent activity was observed in cells loaded with 0.68 M NaCl. When Na+ was nonuniformly distributed on the plasma membrane, the cell luminescence kinetics was nonstationary in the 20-min range: during incubation, the luminescence intensity increased at pH 6.5 and decreased at pH 8.5. The activation and damping rate constants depended on the Na+ gradient value. The maximum of luminescent activity shifted during incubation from pH 8.5 to 6.5-7.0. The luminescence kinetics in the systems with KCl was stationary; the maximum level of luminescence was observed in the pH range of 7.0-7.5. Under Na(+)-controlled conditions, the cell respiration and luminescence changed in synchronism. The protonophore CCP at a concentration of 20 microM completely inhibited luminescence at pH 6.5 and was ineffective at pH 8.5.  相似文献   
108.
Photobacteria were used as a test object for rapid monitoring of ecotoxicants. Specific inhibitory effects of phenol and its chlorinated derivatives (2-chlorophenol, 2,3-dichlorophenol, pentachlorophenol, 2,4-dichlorophenoxyacetic acid, and 2,4,5-trichlorophenoxyacetic acid) on bioluminescence and respiration of intact cells, as well as on the emission activity of the bioluminescence system and luciferase itself, were studied. The toxic effect on the photobacterial cells was found to increase as the number of chlorine atoms in the chlorophenol molecule increases. However, this trend was not observed in cell-free systems (purified luciferase or the protein fraction of a cell-free extract treated with (NH)4SO4 at 40-75% saturation). Bacterial cells have a higher threshold sensitivity to chlorophenols in comparison to the sensitivity of the bioluminescence enzyme system or luciferase. Neutral phenols inhibit luciferase by competing with decanal, whereas a mixed mechanism of inhibition with this substrate is typical of phenoxyacetic acids. With respect to FMNH2, all chlorophenols tested in this work were uncompetitive inhibitors. Oxygen uptake by photobacteria was shown to be insensitive to chlorophenols, at least within the concentration range that was effective in bioluminescence inhibition. The results of this study suggest that bacterial bioluminescence system is not the primary target of the chlorophenol-induced effect on photobacteria.  相似文献   
109.
In search of the structural basis for gating of amiloride-sensitive Na(+) channels, kinetic properties of single homo and heterooligomeric ENaCs formed by the subunits with individual truncated cytoplasmic domains were studied in a cell-free planar lipid bilayer reconstitution system. Our results identify the N-terminus of the alpha-subunit as a major determinant of kinetic behavior of both homooligomeric and heterooligomeric ENaCs, although the carboxy-terminal domains of beta- and gamma-ENaC subunits play important role(s) in modulation of the kinetics of heterooligomeric channels. We also found that the cystic fibrosis transmembrane conductance regulator (CFTR) inhibits amiloride-sensitive channels, at least in part, by modulating their gating. Comparison of these data suggests that the modulatory effects of the beta- and gamma-ENaC subunits, and of the CFTR, may involve the same, or closely related, mechanism(s); namely, "locking" the heterooligomeric channels in their closed state. These mechanisms, however, do not completely override the gating mechanism of the alpha-channel.  相似文献   
110.
There is little research investigating relationships between the Functional Movement Screen (FMS) and athletic performance in female athletes. This study analyzed the relationships between FMS (deep squat; hurdle step [HS]; in-line lunge [ILL]; shoulder mobility; active straight-leg raise [ASLR]; trunk stability push-up; rotary stability) scores, and performance tests (bilateral and unilateral sit-and-reach [flexibility]; 20-m sprint [linear speed]; 505 with turns from each leg; modified T-test with movement to left and right [change-of-direction speed]; bilateral and unilateral vertical and standing broad jumps; lateral jumps [leg power]). Nine healthy female recreational team sport athletes (age = 22.67 ± 5.12 years; height = 1.66 ± 0.05 m; body mass = 64.22 ± 4.44 kilograms) were screened in the FMS and completed the afore-mentioned tests. Percentage between-leg differences in unilateral sit-and-reach, 505 turns and the jumps, and difference between the T-test conditions, were also calculated. Spearman''s correlations (p ≤ 0.05) examined relationships between the FMS and performance tests. Stepwise multiple regressions (p ≤ 0.05) were conducted for the performance tests to determine FMS predictors. Unilateral sit-and-reach positive correlated with the left-leg ASLR (r = 0.704-0.725). However, higher-scoring HS, ILL, and ASLR related to poorer 505 and T-test performance (r = 0.722-0.829). A higher-scored left-leg ASLR related to a poorer unilateral vertical and standing broad jump, which were the only significant relationships for jump performance. Predictive data tended to confirm the correlations. The results suggest limitations in using the FMS to identify movement deficiencies that could negatively impact athletic performance in female team sport athletes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号