首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   478篇
  免费   33篇
  511篇
  2023年   6篇
  2022年   8篇
  2021年   22篇
  2020年   13篇
  2019年   19篇
  2018年   17篇
  2017年   16篇
  2016年   20篇
  2015年   31篇
  2014年   23篇
  2013年   29篇
  2012年   48篇
  2011年   39篇
  2010年   29篇
  2009年   24篇
  2008年   26篇
  2007年   15篇
  2006年   25篇
  2005年   23篇
  2004年   18篇
  2003年   12篇
  2002年   20篇
  2001年   5篇
  2000年   1篇
  1999年   1篇
  1998年   5篇
  1996年   1篇
  1995年   1篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1985年   1篇
  1983年   1篇
  1979年   1篇
排序方式: 共有511条查询结果,搜索用时 15 毫秒
91.
Feather mites are arthropods that live on or in the feathers of birds, and are among the commonest avian ectosymbionts. However, the nature of the ecological interaction between feather mites and birds remains unclear, some studies reporting negative effects of feather mites on their hosts and others reporting positive or no effects. Here we use a large dataset comprising 20 189 measurements taken from 83 species of birds collected during 22 yr in 151 localities from seven countries in Europe and North Africa to explore the correlation between feather mite abundance and body condition of their hosts. We predicted that, if wing‐dwelling feather mites are parasites, a negative correlation with host body condition should be found, while a mutualistic interaction should yield positive correlation. Although negative relationships between feather mite abundance and host body condition were found in a few species of birds, the sign of the correlation was positive in most bird species (69%). The overall effect size was only slightly positive (r =0.066). The effect of feather mite abundance explained <10% of variance in body condition in most species (87%). Results suggest that feather mites are not parasites of birds, but rather that they hold a commensalistic relationship where feather mites may benefit from feeding on uropygial gland secretions of their hosts and birds do not seem to obtain a great benefit from the presence of feather mites.  相似文献   
92.
93.
Aquaporin-4, present in ependymal cells, in glia limiting and abundantly in pericapillary astrocyte foot processes, and aquaporin-1, expressed in choroid plexus epithelial cells, play an important role in cerebrospinal fluid production and may be involved in the pathophysiology of age-dependent hydrocephalus. The finding that brain aquaporins expression is regulated by low oxygen tension led us to investigate how hypoxia and elevated levels of cerebral aquaporins may result in an increase in cerebrospinal fluid production that could be associated with a hydrocephalic condition. Here we have explored, in young and aged mice exposed to hypoxia, whether aquaporin-4 and aquaporin-1 participate in the development of age-related hydrocephalus. Choroid plexus, striatum, cortex and ependymal tissue were analyzed separately both for mRNA and protein levels of aquaporins. Furthermore, parameters such as total ventricular volume, intraventricular pressure, cerebrospinal fluid outflow rate, ventricular compliance and cognitive function were studied in wild type, aquaporin-1 and aquaporin-4 knock-out animals subjected to hypoxia or normoxia. Our data demonstrate that hypoxia is involved in the development of age-related hydrocephalus by a process that depends on aquaporin-4 channels as a main route for cerebrospinal fluid movement. Significant increases in aquaporin-4 expression that occur over the course of animal aging, together with a reduced cerebrospinal fluid outflow rate and ventricular compliance, contribute to produce more severe hydrocephalus related to hypoxic events in aged mice, with a notable impairment in cognitive function. These results indicate that physiological events and/or pathological conditions presenting with cerebral hypoxia/ischemia contribute to the development of chronic adult hydrocephalus.  相似文献   
94.
The oxoeicosanoid receptor 1 (OXER1) is a member of the G-protein coupled receptors (GPCR) family, and is involved in inflammatory processes and oncogenesis. As such it is an attractive target for pharmacological intervention. The present study aimed to shed light on the molecular fundaments of OXER1 modulation using chemical probes structurally related to the natural agonist 5-oxo-ETE. In a first step, 5-oxo-ETE and its closely related derivatives (5-oxo-EPE and 4-oxo-DHA) were obtained by conducting concise and high-yielding syntheses. The biological activity of obtained compounds was assessed in terms of potency (EC50) and efficacy (Emax) for arrestin recruitment. Finally, molecular modelling and simulation were used to explore binding characteristics of 5-oxo-ETE and derivatives with the aim to rationalize biological activity. Our data suggest that the tested 5-oxo-ETE derivatives (i) insert quickly into the membrane, (ii) access the receptor via transmembrane helices (TMs) 5 and 6 from the membrane side and (iii) drive potency and efficacy by differential interaction with TM5 and 7. Most importantly, we found that the methyl ester of 5-oxo-ETE (1a) showed even a higher maximum response than the natural agonist (1). In contrast, shifting the 5-oxo group into position 4 results in inactive compounds (4-oxo DHA compounds (3) and (3a)). All in all, our study provides relevant structural data that help understanding better OXER1 functionality and its modulation. The structural information presented herein will be useful for designing new lead compounds with desired signalling profiles.  相似文献   
95.
Chemical communication plays an essential role in several social and reproductive behaviors of many animals. In lizards, the main sources of semiochemicals are femoral or pre‐anal gland secretions and feces. In male lizards Psammodromus algirus, there are age‐related differences in the chemical composition of femoral gland secretions and in the reproductive strategies, with older males defending territories and females, while younger males adopting sneak‐mating strategies. Females flee more often from mating advances of young males than from those of old males, which are more successful in obtaining matings. This suggests that age discrimination of males may be important for females. We tested here whether females showed differential chemosensory responses to chemical cues (femoral gland secretion and feces) of males of two age classes, and whether females use information from substrate scent marks of males of different ages to select where to stay. We found that females elicited more tongue‐flicks to the secretion and feces of old males than to control or secretion and feces of young males. Also, the time spent by females on a scented paper depended on the treatment, suggesting that females tended to spend more time on scent marks made with femoral secretions of old males. Adult females seemed capable to discriminate between young and old males based on chemical cues alone and showed more interest in scents of old males. However, substrate scent marks did not seem to entirely determine site selection by females, suggesting that females might need additional cues to perform the choice. These results can be explained by the different age‐dependent reproductive strategies of males, which can affect differentially to females.  相似文献   
96.
Virus-encoded movement proteins (MPs) mediate cell-to-cell spread of viral RNA through plant membranous intercellular connections, the plasmodesmata. The molecular pathway by which MPs interact with viral genomes and target plasmodesmata channels is largely unknown. The 9-kDa MP from carnation mottle carmovirus (CarMV) contains two potential transmembrane domains. To explore the possibility that this protein is in fact an intrinsic membrane protein, we have investigated its insertion into the endoplasmic reticulum membrane. By using in vitro translation in the presence of dog pancreas microsomes, we demonstrate that CarMV p9 inserts into the endoplasmic reticulum without the aid of any additional viral or plant host components. We further show that the membrane topology of CarMV p9 is N(cyt)-C(cyt) (N and C termini of the protein facing the cytoplasm) by in vitro translation of a series of truncated and full-length constructs with engineered glycosylation sites. Based on these results, we propose a topological model in which CarMV p9 is anchored in the membrane with its N- and C-terminal tail segments interacting with its soluble, RNA-bound partner CarMV p7, to accomplish the viral cell-to-cell movement function.  相似文献   
97.
98.
BACKGROUND: Saccharomyces cerevisiae is recognized as a model system representing a simple eukaryote whose genome can be easily manipulated. Information solicited by scientists on its biological entities (Proteins, Genes, RNAs...) is scattered within several data sources like SGD, Yeastract, CYGD-MIPS, BioGrid, PhosphoGrid, etc. Because of the heterogeneity of these sources, querying them separately and then manually combining the returned results is a complex and time-consuming task for biologists most of whom are not bioinformatics expert. It also reduces and limits the use that can be made on the available data. RESULTS: To provide transparent and simultaneous access to yeast sources, we have developed YeastMed: an XML and mediator-based system. In this paper, we present our approach in developing this system which takes advantage of SB-KOM to perform the query transformation needed and a set of Data Services to reach the integrated data sources. The system is composed of a set of modules that depend heavily on XML and Semantic Web technologies. User queries are expressed in terms of a domain ontology through a simple form-based web interface. CONCLUSIONS: YeastMed is the first mediation-based system specific for integrating yeast data sources. It was conceived mainly to help biologists to find simultaneously relevant data from multiple data sources. It has a biologist-friendly interface easy to use. The system is available at http://www.khaos.uma.es/yeastmed/.  相似文献   
99.
Abstract

The presence of two different additives during non-covalent immobilization of lipase was studied. Lipase was immobilized via hydrophobic interactions on an amorphous silica with large pore size bearing octyl groups on the surface. Polyethyleneglycol (PEG) with different molecular weights (MW: 1500, 3000 and 10,000) were added to the suspension during enzyme immobilization, in an enzyme to PEG molar ratio of 1:10, and also 1:20 in the case of PEG1500. The activity after 15 d increased from 10% (absence of PEG) to values close to 40% in samples with PEG except the catalyst immobilized in the presence of 1:10 PEG1500, which kept fully active after 15 d incubation in toluene at 70?°C. The presence of water during storage of immobilized enzymes leads to significant activity loss. Saturated solutions of salts controlling the water activity of the systems were used to reduce in a controlled fashion the moisture of the systems: CaCl2 (aw=?0.037), MgCl2 (aw=?0.328), Mg(NO3)2 (aw=?0.529), Na2PO4.12H2O (aw=?0.74) and KCl (aw=?0.84). The immobilized lipase was suspended in saturated solutions of these salts, and then filtered and incubated in desiccators in the presence of the corresponding saturated salt solutions. Catalysts suspended and incubated in KCl or only suspended in phosphate kept some 20% activity after 33 d incubation whereas the maximal stability was achieved when the catalyst was suspended in phosphate and kept in a desiccator without salt solution. This catalyst kept around 50% activity after 33 d incubation. An inversely proportional relationship can be established between the stability achieved by the enzyme and the water content of the system.  相似文献   
100.
Increases in the concentration of quinones, such as benzoquinone, in pathological processes mediated by oxidative imbalance play a role in the disorganization and disassembly of the microtubule network in both non-neural and neural cells. In this study, we show that the effects on microtubules appear to be a direct result of the action of the quinones on tubulin, the main component of microtubules, since tubulin modification by quinones, including benzoquinone and juglone, leads to aggregation into dimers and other oligomers. Therefore, quinones and quinone-mediated effects provide a mechanistic link between oxidative stress, microtubule disruption, neuronal dysfunction and death, i.e., key salient feature of Alzheimer's disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号