首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   588篇
  免费   80篇
  668篇
  2023年   6篇
  2022年   9篇
  2021年   22篇
  2020年   14篇
  2019年   24篇
  2018年   18篇
  2017年   22篇
  2016年   22篇
  2015年   37篇
  2014年   30篇
  2013年   33篇
  2012年   55篇
  2011年   41篇
  2010年   31篇
  2009年   26篇
  2008年   31篇
  2007年   23篇
  2006年   29篇
  2005年   31篇
  2004年   23篇
  2003年   20篇
  2002年   23篇
  2001年   11篇
  2000年   4篇
  1999年   6篇
  1998年   7篇
  1997年   2篇
  1996年   5篇
  1995年   5篇
  1994年   7篇
  1993年   4篇
  1992年   5篇
  1991年   4篇
  1990年   5篇
  1989年   7篇
  1988年   6篇
  1987年   3篇
  1986年   4篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1975年   1篇
排序方式: 共有668条查询结果,搜索用时 9 毫秒
111.
The cell wall is a defining organelle that differentiates fungi from its sister clades in the opisthokont superkingdom. With a sensitive technique to align low-complexity protein sequences, we have identified 187 cell wall-related proteins in Saccharomyces cerevisiae and determined the presence or absence of homologs in 17 other fungal genomes. There were both conserved and lineage-specific cell wall proteins, and the degree of conservation was strongly correlated with protein function. Some functional classes were poorly conserved and lineage specific: adhesins, structural wall glycoprotein components, and unannotated open reading frames. These proteins are primarily those that are constituents of the walls themselves. On the other hand, glycosyl hydrolases and transferases, proteases, lipases, proteins in the glycosyl phosphatidyl-inositol-protein synthesis pathway, and chaperones were strongly conserved. Many of these proteins are also conserved in other eukaryotes and are associated with wall synthesis in plants. This gene conservation, along with known similarities in wall architecture, implies that the basic architecture of fungal walls is ancestral to the divergence of the ascomycetes and basidiomycetes. The contrasting lineage specificity of wall resident proteins implies diversification. Therefore, fungal cell walls consist of rapidly diversifying proteins that are assembled by the products of an ancestral and conserved set of genes.  相似文献   
112.
Cannabinoids, the active components of Cannabis sativa (marijuana) and their endogenous counterparts, exert their effects by binding to specific G-protein-coupled receptors that modulate adenylyl cyclase and ion channels. Recent research has shown that the CB1 cannabinoid receptor is also coupled to the generation of the lipid second messenger ceramide via two different pathways: sphingomyelin hydrolysis and ceramide synthesis de novo. Sustained ceramide accumulation in tumor cells mediates cannabinoid-induced apoptosis, as evidenced by in vitro and in vivo studies. This effect seems to be due to the impact of ceramide on key cell signalling systems such as the extracellular signal-regulated kinase cascade and the Akt pathway. These findings provide a new conceptual view on how cannabinoids act, and raise interesting physiological and therapeutic questions.  相似文献   
113.
114.
Colour polymorphism results from the expression of multiallelic genes generating phenotypes with very distinctive colourations. Most colour polymorphisms are due to differences in the type or amount of melanins present in each morph, which also differ in several behavioural, morphometric and physiological attributes. Melanin-based colour morphs could also differ in the levels of glutathione (GSH), a key intracellular antioxidant, because of the role of this molecule in melanogenesis. As GSH inhibits the synthesis of eumelanin (i.e. the darkest melanin form), individuals of darker morphs are expected to have lower GSH levels than those of lighter morphs. We tested this prediction in nestlings of two polymorphic raptors, the booted eagle Hieraaetus pennatus and the Eleonora's falcon Falco eleonorae, both of which occur in two morphs differing in the extent of eumelanic plumage. As expected, melanic booted eagle nestlings had lower blood GSH levels than light morph eagle nestlings. In the Eleonora's falcon, however, melanic nestlings only had lower GSH levels after controlling for the levels of other antioxidants. We also found that melanic female eagle nestlings had higher levels of antioxidants other than GSH and were in better body condition than light female eagle nestlings. These findings suggest an adaptive response of melanic nestlings to compensate for reduced GSH levels. Nevertheless, these associations were not found in falcons, indicating species-specific particularities in antioxidant machinery. Our results are consistent with previous work revealing the importance of GSH on the expression of melanic characters that show continuous variation, and suggest that this pathway also applies to discrete colour morphs. We suggest that the need to maintain low GSH levels for eumelanogenesis in dark morph individuals may represent a physiological constraint that helps regulate the evolution and maintenance of polymorphisms.  相似文献   
115.
Polygalacturonases are enzymes involved in plant cell wall growth and reorganization. Transgenic Arabidopsis thaliana plants with a Saccharomyces cerevisiae endopolygalacturonase gene (PGU1) were obtained. The yeast gene was properly expressed in the plants as it has been shown by RT-PCR as well as by the increase in the endopolygalacturonase activity. The transgenic plants showed conspicuous malformations in early stages of development probably due to a weak cell adhesion. On the other hand, adult plants exhibited almost no phenotypic differences as compared to the wild type plants, this suggesting the appearance of some mechanisms on the plant side to counteract the effect of the overexpressed polygalacturonase.  相似文献   
116.
Sulfated fucans, sulfated galactans, and glycosaminoglycans are extensively studied worldwide in terms of both structure and biomedical functions. Liquid-state nuclear magnetic resonance (NMR) spectroscopy is the most employed analytical technique in structural analysis of these sulfated glycans. This is due to the fact that NMR-based analyses enable a series of achievements such as (i) accurate structure characterization/determination; (ii) measurements of parameters regarding molecular motion (dynamics); (iii) assessment of the 3D structures (usually assisted by computational techniques of Molecular Modeling and/or Molecular Dynamics) of the composing monosaccharides (ring conformers) and the overall conformational states of the glycan chains either free in solution or bound to proteins; and (iv) analysis of the resultant intermolecular complexes with functional proteins through either the protein or the carbohydrate perspective. In this review, after a general introduction about the principal NMR parameters utilized for achieving this set of structural information, discussion is given on NMR-based studies of some representative sulfated fucans, sulfated galactans, and glycosaminoglycans. Due to the growing number of studies concerning both structure and function of sulfated glycans and the widely use of NMR spectroscopy in such studies, a review paper discussing (i) the most experiments employed for analysis, (ii) procedures used in data interpretation, and (iii) the general aspects of the sulfated glycans, is timely in the literature.  相似文献   
117.
Analysis of brain microtubule protein from patients with Alzheimer's disease showed decreased alpha tubulin levels along with increased acetylation of the alpha tubulin subunit, mainly in those microtubules from neurons containing neurofibrillary tau pathology. To determine the relationship of tau protein and increased tubulin acetylation, we studied the effect of tau on the acetylation-deacetylation of tubulin. Our results indicate that tau binds to the tubulin-deacetylase, histone deacetylase 6 (HDAC6), decreasing its activity with a consequent increase in tubulin acetylation. As expected, increased acetylation was also found in tubulin from wild-type mice compared with tubulin from mice lacking tau because of the tau-mediated inhibition of the deacetylase. In addition, we found that an excess of tau protein, as a HDAC6 inhibitor, prevents induction of autophagy by inhibiting proteasome function.  相似文献   
118.
119.

Background

Malaria is an extremely devastating disease that continues to affect millions of people each year. A distinctive attribute of malaria infected red blood cells is the presence of malarial pigment or the so-called hemozoin. Hemozoin is a biocrystal synthesized by Plasmodium and other blood-feeding parasites to avoid the toxicity of free heme derived from the digestion of hemoglobin during invasion of the erythrocytes.

Scope of review

Hemozoin is involved in several aspects of the pathology of the disease as well as in important processes such as the immunogenicity elicited. It is known that the once best antimalarial drug, chloroquine, exerted its effect through interference with the process of hemozoin formation. In the present review we explore what is known about hemozoin, from hemoglobin digestion, to its final structural analysis, to its physicochemical properties, its role in the disease and notions of the possible mechanisms that could kill the parasite by disrupting the synthesis or integrity of this remarkable crystal.

Major conclusions

The importance and peculiarities of this biocrystal have given researchers a cause to consider it as a target for new antimalarials and to use it through unconventional approaches for diagnostics and therapeutics against the disease.

General significance

Hemozoin plays an essential role in the biology of malarial disease. Innovative ideas could use all the existing data on the unique chemical and biophysical properties of this macromolecule to come up with new ways of combating malaria.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号