首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1729篇
  免费   93篇
  国内免费   4篇
  2023年   21篇
  2022年   42篇
  2021年   114篇
  2020年   41篇
  2019年   56篇
  2018年   77篇
  2017年   54篇
  2016年   57篇
  2015年   80篇
  2014年   102篇
  2013年   121篇
  2012年   117篇
  2011年   126篇
  2010年   49篇
  2009年   48篇
  2008年   70篇
  2007年   58篇
  2006年   71篇
  2005年   47篇
  2004年   29篇
  2003年   35篇
  2002年   27篇
  2001年   30篇
  2000年   29篇
  1999年   28篇
  1998年   8篇
  1997年   8篇
  1995年   4篇
  1994年   18篇
  1993年   10篇
  1992年   17篇
  1991年   16篇
  1990年   20篇
  1989年   18篇
  1988年   12篇
  1987年   17篇
  1986年   14篇
  1985年   21篇
  1984年   12篇
  1983年   9篇
  1982年   9篇
  1981年   7篇
  1979年   6篇
  1977年   7篇
  1976年   5篇
  1974年   8篇
  1973年   6篇
  1972年   8篇
  1971年   8篇
  1970年   7篇
排序方式: 共有1826条查询结果,搜索用时 15 毫秒
81.
Brassica juncea is mainly cultivated in the arid and semi-arid regions of India where its production is significantly affected by soil salinity. Adequate knowledge of the mechanisms underlying the salt tolerance at sub-cellular levels must aid in developing the salt-tolerant plants. A proper functioning of chloroplasts under salinity conditions is highly desirable to maintain crop productivity. The adaptive molecular mechanisms offered by plants at the chloroplast level to cope with salinity stress must be a prime target in developing the salt-tolerant plants. In the present study, we have analyzed differential expression of chloroplast proteins in two Brassica juncea genotypes, Pusa Agrani (salt-sensitive) and CS-54 (salt-tolerant), under the effect of sodium chloride. The chloroplast proteins were isolated and resolved using 2DE, which facilitated identification and quantification of 12 proteins that differed in expression in the salt-tolerant and salt-sensitive genotypes. The identified proteins were related to a variety of chloroplast-associated molecular processes, including oxygen-evolving process, PS I and PS II functioning, Calvin cycle and redox homeostasis. Expression analysis of genes encoding differentially expressed proteins through real time PCR supported our findings with proteomic analysis. The study indicates that modulating the expression of chloroplast proteins associated with stabilization of photosystems and oxidative defence plays imperative roles in adaptation to salt stress.  相似文献   
82.
Pancreatic ductal adenocarcinoma (PDAC), the most common form of pancreatic cancer, remains one of the highly lethal malignancies. The highly refractory nature of clinically advanced disease and lack of a reliable biomarker for early detection are major obstructions in improving patient outcome. The recent efforts, however, in understanding the pancreatic tumor biology have resulted in the recognition of novel addictions as well as vulnerabilities of tumor cells and are being assessed for their clinical potential. This special issue highlights some of the recent progress, complexity and challenges towards improving disease outcome in patients with this lethal malignancy.  相似文献   
83.
84.
ObjectivePhosphorous is an essential micronutrient of plants and involved in critical biological functions. In nature, phosphorous is mostly present in immobilized inorganic mineral and in the fixed organic form including phytic acid and phosphoesteric compounds. However, the bioavailability of bound phosphorous could be enhanced by the use of phosphate solubilizing microorganisms such as bacteria and fungi. The phytases are widespread in an environment and have been isolated from different sources comprising bacteria and fungi.MethodologyIn current studies, we show the successful use of gamma rays and EMS (Ethyl Methane Sulphonate) mutagenesis for enhanced activity of phytases in a fungal strain Sporotrichum thermophile.ResultsWe report an improved strain ST2 that could produce a clear halo zone around the colony, up to 24 mm. The maximum enzymatic activity was found of 382 U/mL on pH 5.5. However, the phytase activity was improved to 387 U/ml at 45 °C. We also report that the mutants produced through EMS showed the greater potential for phytase production.ConclusionThe current study highlights the potential of EMS mutagenesis for strain improvement over physical mutagens.  相似文献   
85.
Enzyme-based catalysis has become one of the most important disciplines in organic synthesis and plays a noteworthy role in the establishment of many chemical industries, e.g. fine chemicals, food or energy, textiles, agricultural, cosmeceutical, medicinal and pharmaceutical industries. However, pristine enzymes fail to demonstrate requisite functionalities for an industrial setting where extremely specific and stable catalysts are required. Immobilization enhances the catalytic stability and activity of enzymes and trims the overall cost burden of the enzyme. Therefore, it widely endeavours for proficient, sustainable, and environmentally responsive catalytic processes. Amongst several immobilization strategies, e.g. (1) supports-assisted, i.e. physical or covalent coupling and (2) supports-free techniques, i.e. cross-linked enzyme crystals (CLECs) or aggregates are the most promising ones and widely pursued for enzyme immobilization purposes. This perspective review focuses on up-to-date developments in the area of enzyme immobilization and presents their potentialities to upgrade and/or modify enzyme properties. Both types of immobilization strategies, i.e. supports-assisted and supports-free techniques are discussed with particular reference to CLECs or aggregates and protein-coated microcrystals. Also, several useful traits achieved after immobilization are also discussed in the second half of the review.  相似文献   
86.
G-protein-coupled receptor (GPCR) kinases (GRKs) are serine/threonine kinases that desensitize agonist-occupied classical GPCRs. Although the insulin receptor (IR) is a tyrosine kinase receptor, the IR also couples to G-proteins and utilizes G-protein signaling components. The present study was designed to test the hypothesis that GRK2 negatively regulates IR signaling. FL83B cells, derived from mouse liver, were treated with insulin and membrane translocation of GRK2 was determined using immunofluoresecence and Western blotting. Insulin caused an increase in the translocation of GRK-2 from cytosol to the plasma membrane. To determine the role of GRK2 in IR signaling, GRK2 was selectively down-regulated ( approximately by 90%) in FL83B cells using a small interfering RNA technique. Basal as well as insulin-induced glycogen synthesis (measured by d-[U-(14)C]glucose incorporation) was increased in GRK2-deficient cells compared with control cells. Similarly, GRK2 deficiency increased the basal and insulin-stimulated phosphorylation of Ser(21) in glycogen synthase kinase-3alpha. Insulin-induced tyrosine phosphorylation of the IR was similar in control and GRK2-deficient cells. Basal and insulin-stimulated phosphorylation of Tyr(612) in insulin receptor subunit 1 was significantly increased while phosphorylation of Ser(307) was decreased in GRK2-deficient FL83B cells compared with control cells. Chronic insulin treatment (24 h) in control cells caused an increase in GRK2 (56%) and a decrease in IR (50%) expression associated with the absence of an increase in glycogen synthesis, suggesting impairment of IR function. However, chronic insulin treatment (24 h) did not decrease IR expression or impair IR effects on glycogen synthesis in GRK2-deficient cells. We conclude that (i) GRK2 negatively regulates basal and insulin-stimulated glycogen synthesis via a post-IR signaling mechanism, and (ii) GRK2 may contribute to reduced IR expression and function during chronic insulin exposure.  相似文献   
87.
88.
89.
Molecular and Cellular Biochemistry - The protective activity of N-(2-hydroxyphenyl)acetamide (NA-2) and NA-2-coated gold nanoparticles (NA-2-AuNPs) in glycerol-treated model of acute kidney injury...  相似文献   
90.
Glycoprotein Ibα (GpIbα) binding ability of A1 domain of von Willebrand factor (vWF) facilitates platelet adhesion that plays a crucial role in maintaining hemostasis and thrombosis at the site of vascular damage. There are both “loss as well as gain of function” mutations observed in this domain. Naturally occurring “gain of function” mutations leave self-activating impacts on the A1 domain which turns the normal binding to characteristic constitutive binding with GPIbα. These “gain of function” mutations are associated with the von Willebrand disease type 2B. In recent years, studies focused on understanding the mechanism and conformational patterns attached to these phenomena have been conducted, but the conformational pathways leading to such binding patterns are poorly understood as of now. To obtain a microscopic picture of such events for the better understanding of pathways, we used molecular dynamics (MD) simulations along with principal component analysis and normal mode analysis to study the effects of Pro1266Leu (Pro503Leu in structural context) mutation on the structure and function of A1 domain of vWF. MD simulations have provided atomic-level details of intermolecular motions as a function of time to understand the dynamic behavior of A1 domain of vWF. Comparative analysis of the trajectories obtained from MD simulations of both the wild type and Pro503Leu mutant suggesting appreciable conformational changes in the structure of mutant which might provide a basis for assuming the “gain of function” effects of these mutations on the A1 domain of vWF, resulting in the constitutive binding with GpIbα.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号