首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3061篇
  免费   191篇
  2023年   5篇
  2022年   18篇
  2021年   32篇
  2020年   20篇
  2019年   35篇
  2018年   48篇
  2017年   49篇
  2016年   71篇
  2015年   108篇
  2014年   143篇
  2013年   168篇
  2012年   213篇
  2011年   214篇
  2010年   147篇
  2009年   144篇
  2008年   234篇
  2007年   195篇
  2006年   207篇
  2005年   209篇
  2004年   207篇
  2003年   157篇
  2002年   186篇
  2001年   26篇
  2000年   25篇
  1999年   31篇
  1998年   39篇
  1997年   30篇
  1996年   32篇
  1995年   15篇
  1994年   20篇
  1993年   20篇
  1992年   16篇
  1991年   10篇
  1990年   13篇
  1989年   6篇
  1988年   6篇
  1987年   8篇
  1986年   6篇
  1985年   12篇
  1984年   17篇
  1983年   19篇
  1982年   11篇
  1981年   6篇
  1980年   5篇
  1979年   11篇
  1978年   5篇
  1977年   11篇
  1975年   6篇
  1974年   8篇
  1973年   6篇
排序方式: 共有3252条查询结果,搜索用时 20 毫秒
61.
Missense mutations of the RET gene have been identified in both multiple endocrine neoplasia (MEN) type 2A/B and Hirschsprung disease (HSCR: congenital absence of the enteric nervous system, ENS). Current consensus holds that MEN2A/B and HSCR are caused by activating and inactivating RET mutations, respectively. However, the biological significance of RET missense mutations in vivo has not been fully elucidated. In the present study, we introduced one MEN2B-associated (M918T) and two HSCR-associated (N394K and Y791F) RET missense mutations into the corresponding regions of the mouse Ret gene by genome editing (RetM919T, RetN396K and RetY792F) and performed histological examinations of Ret-expressing tissues to understand the pathogenetic impact of each mutant in vivo. RetM919T/+ mice displayed MEN2B-related phenotypes, including C-cell hyperplasia and abnormal enlargement of the primary sympathetic ganglia. Similar sympathetic phenotype was observed in RetM919T/- mice, demonstrating a strong pathogenetic effect of the Ret M918T by a single-allele expression. In contrast, no abnormality was found in the ENS of mice harboring the Ret N394K or Y791F mutation. Most surprisingly, single-allele expression of RET N394K or Y791F was sufficient for normal ENS development, indicating that these RET mutants exert largely physiological function in vivo. This study reveals contrasting pathogenetic effects between MEN2B- and HSCR-associated RET missense mutations, and suggests that some of HSCR-associated RET missense mutations are by themselves neither inactivating nor pathogenetic and require involvement of other gene mutations for disease expressivity.  相似文献   
62.
Morbillivirus infection is a severe threat to marine mammals. Mass die‐offs caused by this infection have repeatedly occurred in bottlenose dolphins (Turiops truncatus) and striped dolphins (Stenella coeruleoalba), both of which belong to the family Delphinidae, but not in other cetaceans. However, it is unknown whether sensitivity to the virus varies among cetacean species. The signaling lymphocyte activation molecule (SLAM) is a receptor on host cells that allows morbillivirus invasion and propagation. Its immunoguloblin variable domain‐like (V) region provides an interface for the virus hemagglutinin (H) protein. In this study, variations in the amino acid residues of the V region of 26 cetacean species, covering almost all cetacean genera, were examined. Three‐dimensional (3D) models of them were generated in a homology model using the crystal structure of the marmoset SLAM and measles virus H protein complex as a template. The 3D models showed 32 amino acid residues on the interface that possibly bind the morbillivirus. Among the cetacean species studied, variations were found at six of the residues. Bottlenose and striped dolphins have substitutions at five positions (E68G, I74V, R90H, V126I, and Q130H) compared with those of baleen whales. Three residues (at positions 68, 90 and 130) were found to alternate electric charges, possibly causing changes in affinity for the virus. This study shows a new approach based on receptor structure for assessing potential vulnerability to viral infection. This method may be useful for assessing the risk of morbillivirus infection in wildlife.  相似文献   
63.
64.

Background and aims

Arbuscular mycorrhizal (AM) fungi play a significant role in P nutrition of crops in agriculture, but P accumulation in the soil, e.g., application of P-fertilizer, generally reduces AM fungal colonization. The impact of long-term application of chemical fertilizer on AM fungal communities was investigated with respect to the time scale.

Methods

Soils were collected from four plots with different fertilizer management in the long-term experimental field established in 1914. Lotus japonicus was grown in the soils in a greenhouse, while Glycine max was grown in the plots in the field. DNA was extracted from their roots, and the diversity and community compositions were analyzed based on occurrence of the AM fungal phylotypes defined by sequence similarity in the LSU rDNA.

Results

The 90-year-application of N and K in the absence of P increased AM fungal diversity and resulted in formation of a distinctive fungal community compared with those in the other treatments. This effect was not cancelled by single application of P. Whereas the impact of balanced application of N, P, and K was ambiguous.

Conclusion

These observations suggest that the presence/absence of P-fertilizer has a major impact on AM fungal communities, but the action may appear only on a long time scale.  相似文献   
65.
The β-1,4-galactosyltransferase 7 (β4GalT7) enzyme is involved in proteoglycan synthesis. In the presence of a manganese ion, it transfers galactose from UDP-galactose to xylose on a proteoglycan acceptor substrate. We present here the crystal structures of human β4GalT7 in open and closed conformations. A comparison of these crystal structures shows that, upon manganese and UDP or UDP-Gal binding, the enzyme undergoes conformational changes involving a small and a long loop. We also present the crystal structures of Drosophila wild-type β4GalT7 and D211N β4GalT7 mutant enzymes in the closed conformation in the presence of the acceptor substrate xylobiose and the donor substrate UDP-Gal, respectively. To understand the catalytic mechanism, we have crystallized the ternary complex of D211N β4GalT7 mutant enzyme in the presence of manganese with the donor and the acceptor substrates together in the same crystal structure. The galactose moiety of the bound UDP-Gal molecule forms seven hydrogen bonds with the protein molecule. The nonreducing end of the xylose moiety of xylobiose binds to the hydrophobic acceptor sugar binding pocket created by the conformational changes, whereas its extended xylose moiety forms hydrophobic interactions with a Tyr residue. In the ternary complex crystal structure, the nucleophile O4 oxygen atom of the xylose molecule is found in close proximity to the C1 and O5 atoms of the galactose moiety. This is the first time that a Michaelis complex of a glycosyltransferase has been described, and it clearly suggests an SN2 type catalytic mechanism for the β4GalT7 enzyme.  相似文献   
66.
Alopecia areata (AA) is an organ-specific and cell-mediated autoimmune disease involving hair loss, but its pathogenesis remains poorly understood. Many autoimmune diseases are genetically associated with alleles of the human leukocyte antigen (HLA) genes within the major histocompatibility complex. Associations between AA and HLA genes were previously observed in some different ethnic groups. However, the results were inconsistent, and a primary susceptibility HLA gene and/or region has not yet been assigned for AA. The aim of this study was to evaluate whether an allele of the HLA-C locus, HLA-C*07:04, which was strongly associated with AA in Chinese Hans, could be replicated in the Japanese population. The HLA-C locus was genotyped by the SSO method using 156 AA patients and 560 healthy controls. As a consequence, among the 17 alleles detected, only two alleles, C*04:01 (OR?=?2.25, CI 95 %?=?1.35–3.75, P?=?1.84E-03) and C*15:02 (OR?=?2.52, CI 95 %?=?1.37–4.64, P?=?2.90E-03), were significantly associated with AA after Bonferroni correction. Further, the stratification analysis suggested that C*04:01, C*07:02, and C*15:02 represented different AA genetic risk factors in each sub-phenotype.  相似文献   
67.
To develop the infrastructure for biotin production through naturally biotin-auxotrophic Corynebacterium glutamicum, we attempted to engineer the organism into a biotin prototroph and a biotin hyperauxotroph. To confer biotin prototrophy on the organism, the cotranscribed bioBF genes of Escherichia coli were introduced into the C. glutamicum genome, which originally lacked the bioF gene. The resulting strain still required biotin for growth, but it could be replaced by exogenous pimelic acid, a source of the biotin precursor pimelate thioester linked to either coenzyme A (CoA) or acyl carrier protein (ACP). To bridge the gap between the pimelate thioester and its dedicated precursor acyl-CoA (or -ACP), the bioI gene of Bacillus subtilis, which encoded a P450 protein that cleaves a carbon-carbon bond of an acyl-ACP to generate pimeloyl-ACP, was further expressed in the engineered strain by using a plasmid system. This resulted in a biotin prototroph that is capable of the de novo synthesis of biotin. On the other hand, the bioY gene responsible for biotin uptake was disrupted in wild-type C. glutamicum. Whereas the wild-type strain required approximately 1 μg of biotin per liter for normal growth, the bioY disruptant (ΔbioY) required approximately 1 mg of biotin per liter, almost 3 orders of magnitude higher than the wild-type level. The ΔbioY strain showed a similar high requirement for the precursor dethiobiotin, a substrate for bioB-encoded biotin synthase. To eliminate the dependency on dethiobiotin, the bioB gene was further disrupted in both the wild-type strain and the ΔbioY strain. By selectively using the resulting two strains (ΔbioB and ΔbioBY) as indicator strains, we developed a practical biotin bioassay system that can quantify biotin in the seven-digit range, from approximately 0.1 μg to 1 g per liter. This bioassay proved that the engineered biotin prototroph of C. glutamicum produced biotin directly from glucose, albeit at a marginally detectable level (approximately 0.3 μg per liter).  相似文献   
68.
69.
d-Serine, an endogenous co-agonist of the N-methyl-d-aspartate (NMDA) receptor is synthesized from l-serine by serine racemase (SRR). A previous study of Srr knockout (Srr-KO) mice showed that levels of d-serine in forebrain regions, such as frontal cortex, hippocampus, and striatum, but not cerebellum, of mutant mice are significantly lower than those of wild-type (WT) mice, suggesting that SRR is responsible for d-serine production in the forebrain. In this study, we attempted to determine whether SRR affects the level of other amino acids in brain tissue. We found that tissue levels of d-aspartic acid in the forebrains (frontal cortex, hippocampus and striatum) of Srr-KO mice were significantly lower than in WT mice, whereas levels of d-aspartic acid in the cerebellum were not altered. Levels of d-alanine, l-alanine, l-aspartic acid, taurine, asparagine, arginine, threonine, γ-amino butyric acid (GABA) and methionine, remained the same in frontal cortex, hippocampus, striatum and cerebellum of WT and mutant mice. Furthermore, no differences in d-aspartate oxidase (DDO) activity were detected in the forebrains of WT and Srr-KO mice. These results suggest that SRR and/or d-serine may be involved in the production of d-aspartic acid in mouse forebrains, although further detailed studies will be necessary to confirm this finding.  相似文献   
70.
Adipose tissue‐derived mesenchymal stem cells (ADSCs) are multipotent and can differentiate into various cell types, including osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β‐cells, and hepatocytes. Compared with the extraction of other stem cells such as bone marrow‐derived mesenchymal stem cells (BMSCs), that of ADSCs requires minimally invasive techniques. In the field of regenerative medicine, the use of autologous cells is preferable to embryonic stem cells or induced pluripotent stem cells. Therefore, ADSCs are a useful resource for drug screening and regenerative medicine. Here we present the methods and mechanisms underlying the induction of multilineage cells from ADSCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号