首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1934篇
  免费   105篇
  国内免费   2篇
  2022年   10篇
  2021年   10篇
  2020年   9篇
  2019年   20篇
  2018年   21篇
  2017年   17篇
  2016年   51篇
  2015年   50篇
  2014年   83篇
  2013年   148篇
  2012年   113篇
  2011年   142篇
  2010年   85篇
  2009年   63篇
  2008年   99篇
  2007年   93篇
  2006年   117篇
  2005年   133篇
  2004年   122篇
  2003年   122篇
  2002年   114篇
  2001年   18篇
  2000年   19篇
  1999年   13篇
  1998年   38篇
  1997年   27篇
  1996年   19篇
  1995年   22篇
  1994年   27篇
  1993年   10篇
  1992年   23篇
  1991年   9篇
  1990年   12篇
  1989年   15篇
  1988年   15篇
  1987年   12篇
  1986年   19篇
  1985年   10篇
  1984年   12篇
  1983年   14篇
  1982年   16篇
  1981年   10篇
  1980年   8篇
  1978年   5篇
  1977年   4篇
  1976年   7篇
  1975年   5篇
  1974年   4篇
  1973年   4篇
  1971年   6篇
排序方式: 共有2041条查询结果,搜索用时 15 毫秒
991.
Protein phosphorylation can be regulated by changes in kinase activity, phosphatase activity, or both. GABAB receptor R2 subunit (GABABR2) is phosphorylated at S783 by 5′-AMP-activated-protein kinase (AMPK), and this phosphorylation modulates GABAB receptor desensitization. Since the GABAB receptor is an integral membrane protein, solubilizing GABABR2 is difficult. To circumvent this problem and to identify specific phosphatases that dephosphorylate S783, we employed an in vitro assay based on dephosphorylation of proteins on PVDF membranes by purified phosphatases. Our method allowed us to demonstrate that S783 in GABABR2 is directly dephosphorylated by PP2A (but not by PP1, PP2B nor PP2C) in a dose-dependent and okadaic acid-sensitive manner. We also show that the level of phosphorylation of the catalytic subunit of AMPK at T172 is reduced by PP1, PP2A and PP2C. Our data indicate that PP2A dephosphorylates GABABR2(S783) less efficiently than AMPK(T172), and that additional phosphatases might be involved in S783 dephosphorylation.  相似文献   
992.
Under some pathological conditions in brain, a large amount of superoxide anion (O2 ?) is produced, causing various cellular damages. Among three isozymes of superoxide dismutase (SOD), extracellular (EC)-SOD should play a role to detoxify O2 ? in extracellular space; however, a little is known about EC-SOD in brain. Although dopamine (DA) stored in the synaptic vesicle is stable, the excess leaked DA is spontaneously oxidized to yield O2 ? and reactive DA quinones, causing damages of dopaminergic neurons. In the present study, we examined the effects of DA on SOD expression in cultured rat cortical astrocytes. By means of RT-PCR, all mRNA of three isozymes of SOD could be detected; however, only EC-SOD was increased by DA exposure for 24 h, dose-dependently. The expression of EC-SOD protein and the cell-surface SOD activity in astrocytes also increased with 100 μM DA exposure. The increase of EC-SOD mRNA by DA was inhibited by a DA transporter inhibitor, GBR12909, whereas it was not changed by DA receptor antagonists, SKF-83566 (D1) and haloperidol (D2). Furthermore, a monoamine oxidase inhibitor, pargyline, and antioxidants, N-acetyl-l-cysteine and glutathione, also did not affect the DA-induced expression of EC-SOD mRNA. On the other hand, an inhibitor of nuclear factor kappaB (NF-κB), ammonium pyrrolidine-1-carbodithioate, suppressed the DA-induced expression of EC-SOD mRNA. These results suggest that DA incorporated into the cells caused the induction of EC-SOD mRNA followed by the enhancements of EC-SOD protein level and the enzyme activity, and that NF-κB activation is involved in the mechanisms of the EC-SOD induction. The regulation of EC-SOD in astrocytes surrounding dopaminergic neurons may contribute to the defensive mechanism against oxidative stress in brain.  相似文献   
993.
The diet of Bubo ascalaphus in Qatar was assessed based on pellets collected from the first known nesting site of the species in the country. The pellets contained a total of 68 prey items, representing 9 different species: 4 mammals, 1 bird, 1 reptile, and at least 3 scorpions. Mammals clearly comprised the major food source (89.7% and 97.7% in frequency and biomass respectively). Our data suggest that Pharaoh Eagle Owls are opportunistic predators that feed on a variety of prey depending on their temporal/spatial availability, which is consistent with previous studies. A literature review clearly suggests that Eagle Owls in arid to semi-arid environments are opportunistic predators with small mammals being their main prey. Predation on migrating Blue-cheeked Bee-eaters Merops persicus supports this hypothesis.  相似文献   
994.
Three kinds of lectins (LOL-I, II and III) were isolated from seeds of Lathyrus odoratus (sweet pea) in a homogenous form. The three fractions agglutinated the erythrocytes of laying hens, and the agglutination was strongly inhibited by α-methyl d-mannoside and d-mannose. However, they did not agglutinate those of the males and nonlyaing hens, differing from concanavalin A which showed a similar binding specificity for monosaccharide to LOL and agglutinated all types of erythrocytes derived from chicken in this study. LOL–I and II had a molecular weight of 52,000 and both consisted of two large (20,000 daltons) and two small subunits (6000 daltons). LOL–III had a molecular weight of 55,000, and its subunit structure was different from those of LOL–I and II. The amino acid compositions of the three fractions were very similar. They contained large amounts of aspartic acid, threonine, serine and valine, but no cysteine or methionine. Circular dichroism measurements indicated that β-structure was a major secondary structure of these lectins. The addition of α-methyl d-mannoside or d-mannose had significant effects on the CD spectra in the near-ultraviolet region, but no detectable change was observed in the 200~250 nm region. LOL–I had two binding sites for d-mannose, and the association constant was about 1000 liters per mol.  相似文献   
995.
996.
Neutral-cyclodextrin glycosyltransferase (EC 3.2.1.19) of alkalophilic Bacillus sp. (ATCC 21783) was purified by starch adsorption, DEAE-cellulose chromatography and Sephadex G–150 gel filtration chromatography followed by preparative polyacrylamide gel electrophoresis. Molecular weight of the purified enzyme was 85,000-88,000 by SDS-disc gel electrophoresis. The enzyme was most active at pH 7 and 50°C, and stable up to 60°C at pH 7 and in the range of pH 6~8 at 60°C by 30 min incubation. The apparent Vmax and Km values for α- and β-cyclodextrin at a constant concentration of sucrose were 417, 70 µmoles glucose/min · mg protein and 10, 0.83 nm, respectively. About 85~90% of amylose, 75~80% of potato starch, 65~70% of amylopectin, 55~60% of glycogen, 45~50% of amylopectin β-limit dextrin, 20~25% of maltotriose and 10~15% of maltose were converted to cyclodextrins with 0.5~1% (w/v) of each substrate.

Schardinger β-dextrin was preferentially produced from starch, and α- or γ-dextrin was gradually formed after prolonged incubation. After 20 min incubation, about 0.4, 14 and 2.5% of α-, β- and γ-dextrin were formed from starch, respectively.  相似文献   
997.
Appropriate experimental conditions for the estimation of hydroxyl radical generation by salicylate hydroxylation were determined for multiple organs of X-irradiated mice in vivo. The in vitro experiments showed that there were significant correlations between the salicylic acid (SA) concentration, the amount of 2,3-dihydroxy benzoic acid (2,3-DHBA) and the X-ray exposure dose, and we obtained two linear-regression equations to calculate the amounts of hydroxyl radicals generated by the X-irradiation. The optimum dosage of SA and the appropriate sampling time for in vivo experiments was determined, and significant increases in the ratio of 2,3-DHBA to SA were detected in several organs of mice after X-irradiation. The hydroxyl radical equivalents of the 2,3-DHBA increases were also calculated. Our results clearly demonstrated the usefulness of the salicylate hydroxylation method in estimating hydroxyl radical generation in multiple organs in vivo.  相似文献   
998.
Hydroxyl radical (·OH) generation in the kidney of mice treated with ferric nitrilotriacetate (Fe-NTA) or potassium bromate (KBrO3) in vivo was estimated by the salicylate hydroxylation method, using the optimal experimental conditions we recently reported. Induction of DNA lesions and lipid peroxidation in the kidney by these nephrotoxic compounds was also examined. The salicylate hydroxylation method revealed significant increases in the ·OH generation after injection of Fe-NTA or KBrO3 in the kidneys. A significant increase in 8-hydroxy-2′-deoxyguanosine in nuclei of the kidney was detected only in the KBrO3 treated mice, while the comet assay showed that the Fe-NTA and KBrO3 treatments both resulted in significant increases in DNA breakage in the kidney. With respect to lipid peroxidation, the Fe-NTA treatment enhanced lipid peroxidation and ESR signals of the alkylperoxy radical adduct. These DNA breaks and lipid peroxidation mediated by ·OH were diminished by pre-treatment with salicylate in vivo. These results clearly demonstrated the usefulness of the salicylate hydroxylation method as well as the comet assay in estimating the involvement of ·OH generation in cellular injury induced by chemicals in vivo.  相似文献   
999.
Multiple endocrine neoplasia type 1 (MEN1) is a rare autosomal dominantly inherited syndrome characterized by parathyroid, gastro-entero-pancreatic and anterior pituitary tumors. Although the tissue selectivity of tumors in specific endocrine organs is the very essence of MEN1, the mechanisms underlying the tissue-selectivity of tumors remain unknown. The product of the Men1 gene, menin, and mixed lineage leukemia (MLL) have been found to cooperatively regulate p27Kip1/CDKN1B (p27) and p18Ink4C/CDKN2C (p18) genes. However, there are no reports on the tissue distribution of these MEN1-related genes. We investigated the expression of these genes in the endocrine and non-endocrine organs of wild-type, Men1 knockout and MLL knockout mice. Men1 mRNA was expressed at a similar level in endocrine and non-endocrine organs. However, MLL, p27 and p18 mRNAs were predominantly expressed in the endocrine organs. Notably, p27 and MLL mRNAs were expressed in the pituitary gland at levels approximately 12- and 17-fold higher than those in the liver. The heterozygotes of Men1 knockout mice the levels of MLL, p27 and p18 mRNAs did not differ from those in the wild-type mice. In contrast, heterozygotes of MLL knockout mice showed significant reductions in p27 mRNA as well as protein levels in the pituitary and p27 and p18 in the pancreatic islets, but not in the liver. This study demonstrated for the first time the predominant expression MEN1-related genes, particularly MLL and p27, in the endocrine organs, and a tissue-specific haploinsuffiency of MLL, but not menin, may lead to a decrease in levels of p27 and p18 mRNAs in endocrine organs. These findings may provide basic information for understanding the mechanisms of tissue selectivity of the tumorigenesis in patients with MEN1.  相似文献   
1000.
Huntington's disease (HD) is a dominantly inherited neurodegenerative disease caused by an expansion of the polyglutamine (polyQ) stretch in huntingtin (htt). Previously, it has been shown that inhibition of the inositol 1,4,5-trisphosphate receptor type 1 (IP3R1) activity reduced aggregation of pathogenic polyQ proteins. Experimentally, this effect was achieved by modification of the intracellular IP3 levels or by application of IP3R1 inhibitors, such as 2-aminoethyl diphenylborinate (2-APB). Unfortunately, there are certain concerns about the 2-APB specificity and cytotoxicity. Moreover, a direct link between IP3R1 and polyQ aggregation has not been shown yet. In this study we show, that down-regulation of the IP3R1 levels by shRNA reduced the aggregation of mutant htt. We tested 2-APB analogs in an attempt to identify less toxic and more IP3R1-specific compounds and found that the effect of these analogs on the reduction of the mutant htt aggregation did weakly correlate with their inhibitory action toward the IP3-induced Ca(2+) release (IICR). Their effect on aggregation was not correlated with the store-operated Ca(2+) entry (SOCE), which is another target of the 2-APB related compounds. Our findings suggest that besides functional contribution of the IP3R inhibition on the mutant htt aggregation there are additional mechanisms for the anti-aggregation effect of the 2-APB related compounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号