首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3520篇
  免费   231篇
  国内免费   2篇
  3753篇
  2022年   22篇
  2021年   35篇
  2020年   21篇
  2019年   29篇
  2018年   46篇
  2017年   37篇
  2016年   61篇
  2015年   101篇
  2014年   116篇
  2013年   205篇
  2012年   198篇
  2011年   183篇
  2010年   119篇
  2009年   115篇
  2008年   152篇
  2007年   145篇
  2006年   151篇
  2005年   164篇
  2004年   154篇
  2003年   145篇
  2002年   149篇
  2001年   123篇
  2000年   111篇
  1999年   117篇
  1998年   63篇
  1997年   48篇
  1996年   30篇
  1995年   27篇
  1994年   26篇
  1993年   29篇
  1992年   92篇
  1991年   68篇
  1990年   56篇
  1989年   73篇
  1988年   62篇
  1987年   50篇
  1986年   42篇
  1985年   43篇
  1984年   42篇
  1983年   33篇
  1982年   16篇
  1981年   18篇
  1979年   24篇
  1978年   21篇
  1977年   25篇
  1975年   22篇
  1974年   17篇
  1973年   15篇
  1972年   17篇
  1970年   15篇
排序方式: 共有3753条查询结果,搜索用时 0 毫秒
71.
A major glutathione S-transferase form (pI 5.7) in rat testis (MT) purified by S-hexyl-glutathione affinity chromatography, followed by chromatofocusing, showed two polypeptide of pI 6.7 (Yn1) and 6.0 (Yn2), having apparently the same molecular mass of 26 kDa on two-dimensional gel electrophoresis. Rechromatofocusing of the MT preparation after 4 M guanidine hydrochloride treatment revealed two additional protein peaks (pI 6.2 and 5.4). These were identified as the two homodimers consisting of the subunits of MT, Yn1Yn1 and Yn2Yn2, respectively. Furthermore, MT could be reconstituted from Yn1Yn1 and Yn2Yn2. These results indicate that MT is a heterodimer, Yn1Yn2, consisting of subunits with very similar molecular masses but different isoelectric points. The Yn1Yn1 form had glutathione S-transferase activities towards 1-chloro-2,4-dinitrobenzene and 1,2-dichloro-4-nitrobenzene. However, the Yn2Yn2 form had no activity towards any of the substrates examined. N-terminal amino acid sequences of subunits Yn1 and Yn2 revealed differences at two positions in the first 20 residues; the amino acid compositions of these subunits were also similar but not identical, indicating that these two subunits are different in the primary structure. Subunits Yn1 and Yn2 are immunologically related to each other and also to subunits 3 (Yb1) and 4 (Yb2) but they are not identical. These four subunits also showed a high degree of similarity in N-terminal amino acid sequences. Subunits Yn1 and Yn2 seem to belong to the rat GST 3-4 family or class mu. Subunits Yn1 and 4 can make a heterodimer, which is detectable not only in rat testis, but also in the heart, kidney and lung. The Yn1Yn1 form was not detected in the testis, but is present in rat brain [Tsuchida et al. (1987) Eur. J. Biochem. 170, 159-164]. The Yn2Yn2 form seemed to differ from GST 5-5 and may be a new form of rat glutathione S-transferase.  相似文献   
72.
73.
The CYR3 mutant of yeast, Saccharomyces cerevisiae, partially accumulated unbudded cells and required cAMP for the best growth at 35 degrees C. The CYR3 mutation was partially dominant over the wild type counterpart and suppressed by the bcy1 mutation which is responsible for the deficiency of the regulatory subunit of cAMP-dependent protein kinase. The molecular weights of cAMP-dependent protein kinase and its catalytic and regulatory subunits were 160,000, 30,000, and 50,000, respectively. No significant differences in the molecular weights of cAMP-dependent protein kinase and the subunits were found between the wild type and CYR3 mutant strains. However, the cAMP-dependent protein kinase activity of CYR3 cells showed significantly higher Ka values for activation by cAMP at 35 degrees C than those of wild type and a clear difference in the electrophoretic mobility of the regulatory subunit was found between the wild type and CYR3 enzymes. The CYR3 mutation was suppressed by the IAC mutation which caused the production of a significantly high level of cAMP. The results indicate that the CYR3 phenotype was produced by a structural mutation in the CYR3 gene coding for the regulatory subunit of cAMP-dependent protein kinase in yeast.  相似文献   
74.
Walking ability is significantly lower in hemodialysis patients compared to healthy people. Decreased walking ability characterized by slow walking speed is associated with adverse clinical events, but determinants of decreased walking speed in hemodialysis patients are unknown. The purpose of this study was to identify factors associated with slow walking speed in ambulatory hemodialysis patients. Subjects were 122 outpatients (64 men, 58 women; mean age, 68 years) undergoing hemodialysis. Clinical characteristics including comorbidities, motor function (strength, flexibility, and balance), and maximum walking speed (MWS) were measured and compared across sex-specific tertiles of MWS. Univariate and multivariate logistic regression analyses were performed to examine whether clinical characteristics and motor function could discriminate between the lowest, middle, and highest tertiles of MWS. Significant and common factors that discriminated the lowest and highest tertiles of MWS from other categories were presence of cardiac disease (lowest: odds ratio [OR] = 3.33, 95% confidence interval [CI] = 1.26–8.83, P<0.05; highest: OR = 2.84, 95% CI = 1.18–6.84, P<0.05), leg strength (OR = 0.62, 95% CI = 0.40–0.95, P<0.05; OR = 0.57, 95% CI = 0.39–0.82, P<0.01), and standing balance (OR = 0.76, 95% CI = 0.63–0.92, P<0.01; OR = 0.81, 95% CI = 0.68–0.97, P<0.05). History of fracture (OR = 3.35, 95% CI = 1.08–10.38; P<0.05) was a significant factor only in the lowest tertile. Cardiac disease, history of fracture, decreased leg strength, and poor standing balance were independently associated with slow walking speed in ambulatory hemodialysis patients. These findings provide useful data for planning effective therapeutic regimens to prevent decreases in walking ability in ambulatory hemodialysis patients.  相似文献   
75.
The effects of a temperature shift-up and various metabolic inhibitors on the protein synthesis of an endosymbiont isolated from the pea aphid were studied. The syntheses of at least three major polypeptides were stimulated transiently immediately after a temperature shift-up, and treatment with ethanol and heavy metals (Cd2+ and As2+). One of these proteins, the 63 kDa heat-shock protein (63-kDa HSP), was immunoprecipitated with antiserum raised against symbionin, which is selectively synthesized by the endosymbiont harbored by the aphid bacteriocytes. The 63 kDa heat-shock protein has a molecular mass of 800 kDa and is more acidic than symbionin. It was also shown that symbionin is subject to phosphorylation in vivo and in vitro after a temperature shift-up. It was thought likely that forms of environmental stress such as heat shock and metabolic inhibitors stimulate the synthesis of a phosphorylated form of symbionin. It was also suggested that the in vitro phosphorylation of symbionin is due to its own catalytic activity. Since symbionin is a homolog of the Escherichia coli groEL protein, a stress protein, it is likely that the endosymbiont suffers stress when harbored by the bacteriocytes and responds in a similar manner to environmental stress when outside these cells.  相似文献   
76.
Ion channels are regulated by protein phosphorylation and dephosphorylation of serine, threonine, and tyrosine residues. Evidence for regulation of channels by tyrosine phosphorylation comes primarily from investigations of the effects of growth factors, which act through receptor tyrosine kinases. The purpose of the present work is to summarize evidence for the regulation of ion channels by integrins, through their downstream, nonreceptor tyrosine kinases. We review both direct and indirect evidence for this regulation, with particular emphasis on Ca2+-activated K+ and voltage-gated Ca2+ channels. We then discuss the critical roles that cytoskeletal, focal-adhesion, and channel-associated scaffolding proteins may play in localizing nonreceptor tyrosine kinases to the vicinity of ion channels. We conclude by speculating on the physiological significance of these regulatory pathways.  相似文献   
77.
78.
We investigated the rapid modification of plasma membrane and changes in mineral nutrients in root-tip cells of Al-tolerant rice and Al-sensitive barley following short-term exposure to Al (20 M Al, 1 h). The plasma membrane of the barley cells was significantly permeabilized when re-elongated in an Al-free Ca solution following a 1-h pre-treatment with Al, while that of rice cells was not affected at all. The elemental distribution and concentration in a 2-mm portion of the root apex were determined by electron probe X-ray microanalysis. Al was localized primarily to the epidermis and outer cortex cells in both species, and was much more abundant in barley than in rice. Al increased and decreased remarkably the intracellular K concentration in whole root-tip cells of rice and barley, respectively. In barley, the decrease in the concentration of Ca coincided with the accumulation of Al. Conversely, the intracellular concentration of P in the surface layers of root-tip cells increased with the accumulation of Al. The distribution and concentration of Ca and P in rice did not change after 1-h treatment with Al. These results suggest that the rapid modification of the plasma membrane of root-tip cells induced by Al affects the nutritional homeostasis in the cells.  相似文献   
79.
80.
Human sPLA2-III [group III secreted PLA2 (phospholipase A2)] is an atypical sPLA2 isoenzyme that consists of a central group III sPLA2 domain flanked by unique N- and C-terminal domains. In the present study, we found that sPLA2-III is expressed in neuronal cells, such as peripheral neuronal fibres, spinal DRG (dorsal root ganglia) neurons and cerebellar Purkinje cells. Adenoviral expression of sPLA2-III in PC12 cells (pheochromocytoma cells) or DRG explants facilitated neurite outgrowth, whereas expression of a catalytically inactive sPLA2-III mutant or use of sPLA2-III-directed siRNA (small interfering RNA) reduced NGF (nerve growth factor)-induced neuritogenesis. sPLA2-III also suppressed neuronal death induced by NGF deprivation. Lipid MS revealed that sPLA2-III overexpression increased the cellular level of lysophosphatidylcholine, a PLA2 reaction product with neuritogenic and neurotropic activities, whereas siRNA knockdown reduced the level of lysophosphatidylcholine. These observations suggest the potential contribution of sPLA2-III to neuronal differentiation and its function under certain conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号