首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   182篇
  免费   16篇
  198篇
  2024年   1篇
  2023年   4篇
  2022年   9篇
  2021年   18篇
  2020年   7篇
  2019年   7篇
  2018年   5篇
  2017年   5篇
  2016年   12篇
  2015年   13篇
  2014年   11篇
  2013年   16篇
  2012年   16篇
  2011年   9篇
  2010年   5篇
  2009年   7篇
  2008年   12篇
  2007年   10篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1980年   1篇
  1977年   1篇
  1974年   2篇
排序方式: 共有198条查询结果,搜索用时 0 毫秒
81.
Cholesterol oxidase (ChOx) has been covalently immobilized onto 1-fluoro-2-nitro-4-azidobenzene (FNAB) modified poly-(3-hexylthiophene) (P3HT) self-assembled monolayer (SAM) onto gold coated glass plates. These ChOx/FNAB/P3HT/Au bio-electrodes have been characterized using contact angle (CA) measurements, UV-vis spectroscopy, electrochemical impedance technique, cyclic voltammetric technique and atomic force microscopic (AFM) technique, respectively. The ChOx/FNAB/P3HT/Au bio-electrodes were utilized for the estimation of cholesterol concentration in standard solutions using surface plasmon resonance (SPR) technique. It is shown that this SPR biosensor has linearity from 50 to 500 mg/dl of cholesterol in solution with detection limit of 50 mg/dl, sensitivity of 1.0 4 m degrees /(mg dl), reusability of around 15 times and a shelf-life of about 10 weeks when stored at 4 degrees C.  相似文献   
82.
83.
84.
85.
The explosive epidemicity of amoebiasis caused by the facultative gastrointestinal protozoan parasite Entamoeba histolytica is a major public health problem in developing countries. Multidrug resistance and side effects of various available antiamoebic drugs necessitate the design of novel antiamobeic agents. The cysteine biosynthetic pathway is the critical target for drug design due to its significance in the growth, survival and other cellular activities of E. histolytica. Here, we have screened 0.15 million natural compounds from the ZINC database against the active site of the EhOASS enzyme (PDB ID. 3BM5, 2PQM), whose structure we previously determined to 2.4 Å and 1.86 Å resolution. For this purpose, the incremental construction algorithm of GLIDE and the genetic algorithm of GOLD were used. We analyzed docking results for top ranking compounds using a consensus scoring function of X-Score to calculate the binding affinity and using ligplot to measure protein-ligand interactions. Fifteen compounds that possess good inhibitory activity against EhOASS active site were identified that may act as potential high affinity inhibitors. In vitro screening of a few commercially available compounds established their biological activity. The first ranked compound ZINC08931589 had a binding affinity of ∼8.05 µM and inhibited about 73% activity at 0.1 mM concentration, indicating good correlation between in silico prediction and in vitro inhibition studies. This compound is thus a good starting point for further development of strong inhibitors.  相似文献   
86.
The growth conditions for chitinase production by Trichoderma asperellum UTP-16 in solid state fermentation was optimized using response surface methodology based on central composite design. The chitinase production was optimized, using one-factor at a time approach, with six independent variables (temperature, pH, NaCl, incubation period, nitrogen and carbon sources) and 3.31 Units per gram dry substrate (U gds−1) exo-chitinase yield was obtained. A 21.15% increase was recorded in chitinase activity (4.01 U gds−1) through surface response methodology, indicates that it is a powerful and rapid tool for optimization of physical and nutritional variables. Further, efficiency of crude enzyme was evaluated against phytopathogenic Fusarium spp. and a mycelial growth inhibition up to 3.5–6.5 mm was achieved in well diffusion assay. These results could be supplemented as basic information for the development of enzyme based formulation of T. asperellum UTP-16 and its use as a biocontrol agent.  相似文献   
87.
Recombinant adenoviruses containing a double-stranded DNA genome of 26–45 kb were broadly explored in basic virology, for vaccination purposes, for treatment of tumors based on oncolytic virotherapy, or simply as a tool for efficient gene transfer. However, the majority of recombinant adenoviral vectors (AdVs) is based on a small fraction of adenovirus types and their genetic modification. Recombineering techniques provide powerful tools for arbitrary engineering of recombinant DNA. Here, we adopted a seamless recombineering technology for high-throughput and arbitrary genetic engineering of recombinant adenoviral DNA molecules. Our cloning platform which also includes a novel recombination pipeline is based on bacterial artificial chromosomes (BACs). It enables generation of novel recombinant adenoviruses from different sources and switching between commonly used early generation AdVs and the last generation high-capacity AdVs lacking all viral coding sequences making them attractive candidates for clinical use. In combination with a novel recombination pipeline allowing cloning of AdVs containing large and complex transgenes and the possibility to generate arbitrary chimeric capsid-modified adenoviruses, these techniques allow generation of tailored AdVs with distinct features. Our technologies will pave the way toward broader applications of AdVs in molecular medicine including gene therapy and vaccination studies.  相似文献   
88.
89.
Euglena gracilis was found to contain a peroxidase that specifically require L-ascorbic acid as the natural electron donor in the cytosol. The presence of an oxidation-reduction system metabolizing L-ascorbic acid was demonstrated in Euglena cells. Oxidation of L-ascorbic acid by the peroxidase, and the absence of ascorbic acid oxidase activity, suggests that the system functions to remove H2O2 in E. gracilis, which lacks catalase.  相似文献   
90.
Abstract

The present work describes the enzymatic properties of Penicillium chrysogenum lipase and its behavior in the presence of organic solvents. The temperature and pH optima of the purified lipase was found to be 55?°C and pH 8.0 respectively. The lipase displayed remarkable stability in both polar and non-polar solvents upto 50% (v/v) concentrations for 72?h. A structural perspective of the purified lipase in different organic solvents was gained by using circular dichroism and intrinsic fluorescence spectroscopy. The native lipase consisted of a predominant α-helix structure which was maintained in both polar and non-polar solvents with the exception of ethyl butyrate where the activity was decreased and the structure was disrupted. The quenching of fluorescence intensity in the presence of organic solvents indicated the transformation of the lipase microenviroment P. chrysogenum lipase offers an interesting system for understanding the solvent stability mechanisms which could be used for rationale designing of engineered lipase biocatalysts for application in organic synthesis in non-aqueous media.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号