首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1937篇
  免费   68篇
  国内免费   1篇
  2006篇
  2022年   9篇
  2021年   11篇
  2020年   11篇
  2019年   9篇
  2018年   18篇
  2017年   14篇
  2016年   16篇
  2015年   45篇
  2014年   40篇
  2013年   178篇
  2012年   85篇
  2011年   99篇
  2010年   84篇
  2009年   57篇
  2008年   107篇
  2007年   119篇
  2006年   97篇
  2005年   111篇
  2004年   134篇
  2003年   146篇
  2002年   102篇
  2001年   20篇
  2000年   15篇
  1999年   21篇
  1998年   33篇
  1997年   20篇
  1996年   26篇
  1995年   13篇
  1994年   21篇
  1993年   17篇
  1992年   20篇
  1991年   17篇
  1990年   17篇
  1989年   15篇
  1988年   15篇
  1987年   20篇
  1986年   10篇
  1985年   15篇
  1984年   28篇
  1983年   14篇
  1982年   18篇
  1981年   29篇
  1980年   25篇
  1979年   9篇
  1978年   10篇
  1977年   14篇
  1976年   6篇
  1975年   8篇
  1974年   6篇
  1973年   11篇
排序方式: 共有2006条查询结果,搜索用时 0 毫秒
71.
72.
Arodent cardiac side population cell fraction formed clonal spheroids in serum-free medium, which expressed nestin, Musashi-1, and multi-drug resistance transporter gene 1, markers of undifferentiated neural precursor cells. These markers were lost following differentiation, and were replaced by the expression of neuron-, glial-, smooth muscle cell-, or cardiomyocyte-specific proteins. Cardiosphere-derived cells transplanted into chick embryos migrated to the truncus arteriosus and cardiac outflow tract and contributed to dorsal root ganglia, spinal nerves, and aortic smooth muscle cells. Lineage studies using double transgenic mice encoding protein 0-Cre/Floxed-EGFP revealed undifferentiated and differentiated neural crest-derived cells in the fetal myocardium. Undifferentiated cells expressed GATA-binding protein 4 and nestin, but not actinin, whereas the differentiated cells were identified as cardiomyocytes. These results suggest that cardiac neural crest-derived cells migrate into the heart, remain there as dormant multipotent stem cells-and under the right conditions-differentiate into cardiomyocytes and typical neural crest-derived cells, including neurons, glia, and smooth muscle.  相似文献   
73.
The transport pathway of specific dietary carotenoids from the midgut lumen to the silk gland in the silkworm, Bombyx mori, is a model system for selective carotenoid transport because several genetic mutants with defects in parts of this pathway have been identified that manifest altered cocoon pigmentation. In the wild-type silkworm, which has both genes, Yellow blood (Y) and Yellow cocoon (C), lutein is transferred selectively from the hemolymph lipoprotein to the silk gland cells where it is accumulated into the cocoon. The Y gene encodes an intracellular carotenoid-binding protein (CBP) containing a lipid-binding domain known as the steroidogenic acute regulatory protein-related lipid transfer domain. Positional cloning and transgenic rescue experiments revealed that the C gene encodes Cameo2, a transmembrane protein gene belonging to the CD36 family genes, some of which, such as the mammalian SR-BI and the fruit fly ninaD, are reported as lipoprotein receptors or implicated in carotenoid transport for visual system. In C mutant larvae, Cameo2 expression was strongly repressed in the silk gland in a specific manner, resulting in colorless silk glands and white cocoons. The developmental profile of Cameo2 expression, CBP expression, and lutein pigmentation in the silk gland of the yellow cocoon strain were correlated. We hypothesize that selective delivery of lutein to specific tissue requires the combination of two components: 1) CBP as a carotenoid transporter in cytosol and 2) Cameo2 as a transmembrane receptor on the surface of the cells.  相似文献   
74.
The appropriate regulation of retinoic acid signaling is indispensable for patterning of the vertebrate central nervous system along the anteroposterior (A-P) axis. Although both CYP26A1 and CYP26C1, retinoic acid-degrading enzymes that are expressed at the anterior end of the gastrulating mouse embryo, have been thought to play an important role in central nervous system patterning, the detailed mechanism of their contribution has remained largely unknown. We have now analyzed CYP26A1 and CYP26C1 function by generating knockout mice. Loss of CYP26C1 did not appear to affect embryonic development, suggesting that CYP26A1 and CYP26C1 are functionally redundant. In contrast, mice lacking both CYP26A1 and CYP26C1 were found to manifest a pronounced anterior truncation of the brain associated with A-P patterning defects that reflect expansion of posterior identity at the expense of anterior identity. Furthermore, Cyp26a1-/-Cyp26c1-/- mice fail to produce migratory cranial neural crest cells in the forebrain and midbrain. These observations, together with a reevaluation of Cyp26a1 mutant mice, suggest that the activity of CYP26A1 and CYP26C1 is required for correct A-P patterning and production of migratory cranial neural crest cells in the developing mammalian brain.  相似文献   
75.
76.
77.
Dietary fiber fermentation by the colonic bacterial flora produces short-chain fatty acids, acetate, propionate and butyrate. Among them, butyrate is considered to be the major energy substrate for colonocytes and, at least in rats, seems to protect against colonic carcinogenesis. In this study, we examined the effect and the mechanisms of short-chain fatty acids on the activity of phase 2 enzymes. Sodium butyrate increased phase 2 enzyme activities in normal rat small intestine epithelial cells, Glutathione S-transferase and NAD(P)H:quinone oxidoreductase (NQO) in a dose-dependent manner; however, other short-chain fatty acids did not increase them. The mechanism of the induction of phase 2 enzymes with sodium butyrate sodium butyrate, but not other short-chain fatty acids was related to the increase of NF-E2-related factor 2 (Nrf2) nuclear translocation and the decrease in the levels of nuclear fraction p53. Sodium butyrate also caused enhancement of Nrf2 mRNA levels and suppression of p53 mRNA levels. Sodium butyrate enhances the activities of phase 2 enzymes via an increase in the Nrf2 protein levels in the nucleus and a decrease in the mRNA and protein levels of p53.  相似文献   
78.
Three species of microalgae able to produce eicosapentaenoic acid(EPA) were collected from brackish and sea water around Japan. The species were identified as Navicula saprophila, Rhodomonassalina and Nitzschia sp. EPA as a proportion of total fatty acids increased in the presence of acetic acid for Rhodomonas salina and Nitzschia sp. However, Navicula saprophila displayed the greatest productivity of EPA and the EPA content of its biomass was enhanced under mixotrophic conditions in the presence of acetic acid. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
79.
A highly practicable synthesis of both enantiomers of 3-hydroxypipecolic acid derivatives 1, 2, 3, 4 is described. Screening of these molecules for glycosidase inhibition has been examined. Compound 3 was shown to be a potent inhibitor of beta-N-acetylglucosaminidase as well as Escherichia coli beta-glucuronidase.  相似文献   
80.
The three protein kinases of Lemna paucicostata that are separableby DEAE-Sephacel chromatography have been designated PI, PIIand PIII [Kato et al. (1983) Plant & Cell Physiol. 24: 841].The optimum pH for the PI and PII enzymes was 7.5 and for thePHI enzyme 7.0. The activities of these enzymes were stimulatedby divalent cations, the maximum stimulation being producedby 5 nw Mg2 $ for PI, by 3 mM Co2 $ for PII and by 1 mM Mn2$ for PIII. The cytokinins; benzyladenine, kinetin and zeatin,inhibited the activity of the PIII enzyme. The molecular weightsof the PI and PII enzymes did not change after incubation withcAMP even though their activities were regulated by this compound. (Received October 17, 1983; )  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号