首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5208篇
  免费   459篇
  国内免费   3篇
  2024年   3篇
  2023年   24篇
  2022年   52篇
  2021年   100篇
  2020年   65篇
  2019年   51篇
  2018年   77篇
  2017年   67篇
  2016年   124篇
  2015年   234篇
  2014年   272篇
  2013年   346篇
  2012年   426篇
  2011年   430篇
  2010年   281篇
  2009年   265篇
  2008年   331篇
  2007年   353篇
  2006年   353篇
  2005年   345篇
  2004年   305篇
  2003年   338篇
  2002年   297篇
  2001年   46篇
  2000年   31篇
  1999年   54篇
  1998年   71篇
  1997年   43篇
  1996年   43篇
  1995年   32篇
  1994年   34篇
  1993年   29篇
  1992年   26篇
  1991年   21篇
  1990年   14篇
  1989年   12篇
  1988年   5篇
  1987年   9篇
  1986年   11篇
  1985年   9篇
  1984年   8篇
  1983年   3篇
  1982年   5篇
  1981年   4篇
  1979年   5篇
  1978年   6篇
  1973年   4篇
  1972年   1篇
  1966年   1篇
  1936年   1篇
排序方式: 共有5670条查询结果,搜索用时 15 毫秒
101.
The concept of life‐history traits and the study of these traits are the hallmark of population biology. Acknowledging their variability and evolution has allowed us to understand how species adapt in response to their environment. The same traits are also involved in how species alter ecosystems and shape their dynamics and functioning. Some theories, such as the metabolic theory of ecology, ecological stoichiometry or pace‐of‐life theory, already recognize this junction, but only do so in an implicitly non‐spatial context. Meanwhile, for a decade now, it has been argued that ecosystem properties have to be understood at a larger scale using meta‐ecosystem theory because source–sink dynamics, community assembly and ecosystem stability are all modified by spatial structure. Here, we argue that some ecosystem properties can be linked to a single life‐history trait, dispersal, i.e. the tendency of organisms to live, compete and reproduce away from their birth place. By articulating recent theoretical and empirical studies linking ecosystem functioning and dynamics to species dispersal, we aim to highlight both the known connections between life‐history traits and ecosystem properties and the unknown areas, which deserve further empirical and theoretical developments.  相似文献   
102.
BackgroundIncreasing our understanding of the genetic architecture of complex traits, through analyses of genotype-phenotype associations and of the genes/polymorphisms accounting for trait variation, is crucial, to improve the integration of molecular markers into forest tree breeding. In this study, two full-sib families and one breeding population of maritime pine were used to identify quantitative trait loci (QTLs) for height growth and stem straightness, through linkage analysis (LA) and linkage disequilibrium (LD) mapping approaches.ResultsThe populations used for LA consisted of two unrelated three-generation full-sib families (n = 197 and n = 477). These populations were assessed for height growth or stem straightness and genotyped for 248 and 217 markers, respectively. The population used for LD mapping consisted of 661 founders of the first and second generations of the breeding program. This population was phenotyped for the same traits and genotyped for 2,498 single-nucleotide polymorphism (SNP) markers corresponding to 1,652 gene loci. The gene-based reference genetic map of maritime pine was used to localize and compare the QTLs detected by the two approaches, for both traits. LA identified three QTLs for stem straightness and two QTLs for height growth. The LD study yielded seven significant associations (P ≤ 0.001): four for stem straightness and three for height growth. No colocalisation was found between QTLs identified by LA and SNPs detected by LD mapping for the same trait.ConclusionsThis study provides the first comparison of LA and LD mapping approaches in maritime pine, highlighting the complementary nature of these two approaches for deciphering the genetic architecture of two mandatory traits of the breeding program.  相似文献   
103.
The mitochondrial F1F0-ATP synthase adopts supramolecular structures. The interaction domains between monomers involve components belonging to the F0 domains. In Saccharomyces cerevisiae, alteration of these components destabilizes the oligomeric structures, leading concomitantly to the appearance of monomeric species of ATP synthase and anomalous mitochondrial morphologies in the form of onion-like structures. The mitochondrial ultrastructure at the cristae level is thus modified. Electron microscopy on cross-sections of wild type mitochondria display many short cristae with narrowed intra-cristae space, whereas yeast mutants defected in supramolecular ATP synthases assembly present a low number of large lamellar cristae of constant thickness and traversing the whole organelle. The growth of these internal structures leads finally to mitochondria with sphere-like structures with a mean diameter of 1 μm that are easily identified by epifluorescence microscopy. As a result, ATP synthase is an actor of the mitochondrial ultrastructure in yeast. This paper reviews the ATP synthase components whose modifications lead to anomalous mitochondrial morphology and also provides a schema showing the formation of the so-called onion-like structures.  相似文献   
104.
105.
Viral envelope glycoproteins promote infection by mediating fusion between viral and cellular membranes. Fusion occurs after dramatic conformational changes within fusion proteins, leading to the exposure of a short stretch of mostly apolar residues, termed the fusion peptide, which is presumed to insert into the membrane and initiate the fusion process. The typical global composition of fusion peptides, rich in hydrophobic but also in small amino acids such as alanine and glycine, was used here as bait to detect other peptidic segments that can insert into membranes. We so evidenced a similar composition in several cytotoxic peptides, which promote pore formation such as peptides involved in amyloidoses and hydrophobic alpha-hairpins of pore-forming toxins. It is suggested that the structural plasticity observed for several membrane active peptides can be conferred by this particular global amino acid composition, which could be thus used to predict such functional behavior from genome data.  相似文献   
106.
BackgroundIn Phase II/III randomized controlled clinical trials for the treatment of acute uncomplicated malaria, pyronaridine–artesunate demonstrated high efficacy and a safety profile consistent with that of comparators, except that asymptomatic, mainly mild-to-moderate transient increases in liver aminotransferases were reported for some patients. Hepatic safety, tolerability, and effectiveness have not been previously assessed under real-world conditions in Africa.Methods and findingsThis single-arm, open-label, cohort event monitoring study was conducted at 6 health centers in Cameroon, Democratic Republic of Congo, Gabon, Ivory Coast, and Republic of Congo between June 2017 and April 2019. The trial protocol as closely as possible resembled real-world clinical practice for the treatment of malaria at the centers. Eligible patients were adults or children of either sex, weighing at least 5 kg, with acute uncomplicated malaria who did not have contraindications for pyronaridine–artesunate treatment as per the summary of product characteristics. Patients received fixed-dose pyronaridine–artesunate once daily for 3 days, dosed by body weight, without regard to food intake. A tablet formulation was used in adults and adolescents and a pediatric granule formulation in children and infants under 20 kg body weight. The primary outcome was the hepatic event incidence, defined as the appearance of the clinical signs and symptoms of hepatotoxicity confirmed by a >2× rise in alanine aminotransferase/aspartate aminotransferase (ALT/AST) versus baseline in patients with baseline ALT/AST >2× the upper limit of normal (ULN). As a secondary outcome, this was assessed in patients with ALT/AST >2× ULN prior to treatment versus a matched cohort of patients with normal baseline ALT/AST. The safety population comprised 7,154 patients, of mean age 13.9 years (standard deviation (SD) 14.6), around half of whom were male (3,569 [49.9%]). Patients experienced 8,560 malaria episodes; 158 occurred in patients with baseline ALT/AST elevations >2×ULN. No protocol-defined hepatic events occurred following pyronaridine–artesunate treatment of malaria patients with or without baseline hepatic dysfunction. Thus, no cohort comparison could be undertaken. Also, as postbaseline clinical chemistry was only performed where clinically indicated, postbaseline ALT/AST levels were not systematically assessed for all patients. Adverse events of any cause occurred in 20.8% (1,490/7,154) of patients, most frequently pyrexia (5.1% [366/7,154]) and vomiting (4.2% [303/7,154]). Adjusting for Plasmodium falciparum reinfection, clinical effectiveness at day 28 was 98.6% ([7,369/7,746] 95% confidence interval (CI) 98.3 to 98.9) in the per-protocol population. There was no indication that comorbidities or malnutrition adversely affected outcomes. The key study limitation was that postbaseline clinical biochemistry was only evaluated when clinically indicated.ConclusionsPyronaridine–artesunate had good tolerability and effectiveness in a representative African population under conditions similar to everyday clinical practice. These findings support pyronaridine–artesunate as an operationally useful addition to the management of acute uncomplicated malaria.Trial registrationClinicalTrials.gov NCT03201770.

Gaston Tona Lutete and co-workers report on safety and effectiveness of the antimalarial drug pyronaridine-artesunate in African countries.  相似文献   
107.
The essential mammalian gene TACC3 is frequently mutated and amplified in cancers and its fusion products exhibit oncogenic activity in glioblastomas. TACC3 functions in mitotic spindle assembly and chromosome segregation. In particular, phosphorylation on S558 by the mitotic kinase, Aurora-A, promotes spindle recruitment of TACC3 and triggers the formation of a complex with ch-TOG-clathrin that crosslinks and stabilises kinetochore microtubules. Here we map the Aurora-A-binding interface in TACC3 and show that TACC3 potently activates Aurora-A through a domain centered on F525. Vertebrate cells carrying homozygous F525A mutation in the endogenous TACC3 loci exhibit defects in TACC3 function, namely perturbed localization, reduced phosphorylation and weakened interaction with clathrin. The most striking feature of the F525A cells however is a marked shortening of mitosis, at least in part due to rapid spindle assembly. F525A cells do not exhibit chromosome missegregation, indicating that they undergo fast yet apparently faithful mitosis. By contrast, mutating the phosphorylation site S558 to alanine in TACC3 causes aneuploidy without a significant change in mitotic duration. Our work has therefore defined a regulatory role for the Aurora-A-TACC3 interaction beyond the act of phosphorylation at S558. We propose that the regulatory relationship between Aurora-A and TACC3 enables the transition from the microtubule-polymerase activity of TACC3-ch-TOG to the microtubule-crosslinking activity of TACC3-ch-TOG-clathrin complexes as mitosis progresses. Aurora-A-dependent control of TACC3 could determine the balance between these activities, thereby influencing not only spindle length and stability but also the speed of spindle formation with vital consequences for chromosome alignment and segregation.  相似文献   
108.
Rhizobia are symbiotic soil bacteria able to intracellularly colonize legume nodule cells and form nitrogen-fixing symbiosomes therein. How the plant cell cytoskeleton reorganizes in response to rhizobium colonization has remained poorly understood especially because of the lack of an in vitro infection assay. Here, we report on the use of the heterologous HeLa cell model to experimentally tackle this question. We observed that the model rhizobium Sinorhizobium meliloti, and other rhizobia as well, were able to trigger a major reorganization of actin cytoskeleton of cultured HeLa cells in vitro. Cell deformation was associated with an inhibition of the three major small RhoGTPases Cdc42, RhoA and Rac1. Bacterial entry, cytoskeleton rearrangements and modulation of RhoGTPase activity required an intact S. meliloti biosynthetic pathway for queuosine, a hypermodifed nucleoside regulating protein translation through tRNA, and possibly mRNA, modification. We showed that an intact bacterial queuosine biosynthetic pathway was also required for effective nitrogen-fixing symbiosis of S. meliloti with its host plant Medicago truncatula, thus indicating that one or several key symbiotic functions of S. meliloti are under queuosine control. We discuss whether the symbiotic defect of que mutants may originate, at least in part, from an altered capacity to modify plant cell actin cytoskeleton.  相似文献   
109.
Microbial anaerobic and so-called hybrid pathways for degradation of aromatic compounds contain β-oxidation-like steps. These reactions convert the product of the opening of the aromatic ring to common metabolites. The hybrid phenylacetate degradation pathway is encoded in Escherichia coli by the paa operon containing genes for 10 enzymes. Previously, we have analyzed protein-protein interactions among the enzymes catalyzing the initial oxidation steps in the paa pathway (Grishin, A. M., Ajamian, E., Tao, L., Zhang, L., Menard, R., and Cygler, M. (2011) J. Biol. Chem. 286, 10735–10743). Here we report characterization of interactions between the remaining enzymes of this pathway and show another stable complex, PaaFG, an enoyl-CoA hydratase and enoyl-Coa isomerase, both belonging to the crotonase superfamily. These steps are biochemically similar to the well studied fatty acid β-oxidation, which can be catalyzed by individual monofunctional enzymes, multifunctional enzymes comprising several domains, or enzymatic complexes such as the bacterial fatty acid β-oxidation complex. We have determined the structure of the PaaFG complex and determined that although individually PaaF and PaaG are similar to enzymes from the fatty acid β-oxidation pathway, the structure of the complex is dissimilar from bacterial fatty acid β-oxidation complexes. The PaaFG complex has a four-layered structure composed of homotrimeric discs of PaaF and PaaG. The active sites of PaaF and PaaG are adapted to accept the intermediary components of the Paa pathway, different from those of the fatty acid β-oxidation. The association of PaaF and PaaG into a stable complex might serve to speed up the steps of the pathway following the conversion of phenylacetyl-CoA to a toxic and unstable epoxide-CoA by PaaABCE monooxygenase.  相似文献   
110.
During the assembly process of ribosomal subunits, their structural components, the ribosomal RNAs (rRNAs) and the ribosomal proteins (r-proteins) have to join together in a highly dynamic and defined manner to enable the efficient formation of functional ribosomes. In this work, the assembly of large ribosomal subunit (LSU) r-proteins from the eukaryote S. cerevisiae was systematically investigated. Groups of LSU r-proteins with specific assembly characteristics were detected by comparing the protein composition of affinity purified early, middle, late or mature LSU (precursor) particles by semi-quantitative mass spectrometry. The impact of yeast LSU r-proteins rpL25, rpL2, rpL43, and rpL21 on the composition of intermediate to late nuclear LSU precursors was analyzed in more detail. Effects of these proteins on the assembly states of other r-proteins and on the transient LSU precursor association of several ribosome biogenesis factors, including Nog2, Rsa4 and Nop53, are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号