首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5342篇
  免费   491篇
  国内免费   3篇
  2024年   3篇
  2023年   18篇
  2022年   48篇
  2021年   101篇
  2020年   65篇
  2019年   52篇
  2018年   78篇
  2017年   70篇
  2016年   124篇
  2015年   237篇
  2014年   277篇
  2013年   347篇
  2012年   438篇
  2011年   433篇
  2010年   288篇
  2009年   270篇
  2008年   338篇
  2007年   363篇
  2006年   359篇
  2005年   350篇
  2004年   310篇
  2003年   346篇
  2002年   302篇
  2001年   52篇
  2000年   38篇
  1999年   62篇
  1998年   79篇
  1997年   48篇
  1996年   43篇
  1995年   36篇
  1994年   36篇
  1993年   29篇
  1992年   33篇
  1991年   23篇
  1990年   17篇
  1989年   14篇
  1988年   7篇
  1987年   11篇
  1986年   15篇
  1985年   10篇
  1984年   8篇
  1983年   4篇
  1982年   6篇
  1981年   7篇
  1980年   3篇
  1979年   5篇
  1978年   7篇
  1974年   3篇
  1973年   6篇
  1966年   3篇
排序方式: 共有5836条查询结果,搜索用时 156 毫秒
951.

Background  

The melatonin receptor subfamily contains three members Mel1a, Mel1b and Mel1c, found in all vertebrates except for Mel1c which is found only in fish, Xenopus species and the chicken. Another receptor, the melatonin related receptor known as GPR50, found exclusively in mammals and later identified as a member of the melatonin receptor subfamily because of its identity to the three melatonin receptors despite its absence of affinity for melatonin. The aim of this study was to describe the evolutionary relationships between GPR50 and the three other members of the melatonin receptor subfamily.  相似文献   
952.

Background  

The Rho GTPases A, B and C proteins, members of the Rho family whose activity is regulated by GDP/GTP cycling, function in many cellular pathways controlling proliferation and have recently been implicated in tumorigenesis. Although overexpression of Rho GTPases has been correlated with tumorigenesis, only their GTP-bound forms are able to activate the signalling pathways implicated in tumorigenesis. Thus, the focus of much recent research has been to identify biological tools capable of quantifying the level of cellular GTP-bound Rho, or determining the subcellular location of activation. However useful, these tools used to study the mechanism of Rho activation still have limitations. The aim of the present work was to employ phage display to identify a conformationally-specific single chain fragment variable (scFv) that recognizes the active, GTP-bound, form of Rho GTPases and is able to discriminate it from the inactive, GDP-bound, Rho in endogenous settings.  相似文献   
953.
The prostate is a relatively homogeneous tissue that is highly specialized in synthetic and secretory functions. The frequency of malignant growth explains its great clinical significance. We used here a combination of subcellular fractionation, 1-DE (one-dimensional gel electrophoresis) protein separation and mass spectrometry, to establish a prostate protein expression profile in mice. Analysis of proteins present in cytosolic (C) and membrane (P) prostate fractions led to the identification of 619 distinct proteins. A majority of abundant proteins were found to compose the metabolism and protein synthesis machinery. Those identified also correspond to known endoplasmic reticulum and Golgi residents, chaperones and anterograde cargos. They included a series of proteins involved in exocytic/endocytic trafficking. Among the signaling proteins, we identified the ubiquitin-like peptides smt3. We showed that both free small ubiquitin-related modifier SUMO-2/3 and SUMO-1 levels are subject to tight control by the androgen 5alpha-dihydrotestosterone (DHT). By contrast with SUMO-2/3, free SUMO-1 peptides are particularly abundant in the prostate when compared with other tissues. Therefore, we report prostate protein expression profiles of cytosolic and membrane fractions in mice. Our data suggest that the identified free SUMO peptides play an important role in this secretory tissue.  相似文献   
954.
Delon I  Brown N 《Current biology : CB》2008,18(9):R389-R391
Integrins link the extracellular matrix to the cytoskeleton via a complex of proteins: the integrin-cytoskeleton link. A recent study in Drosophila has uncovered a new component of the link, Wech, and shown that it is essential for integrin-mediated adhesion.  相似文献   
955.
956.
Numerous studies have investigated the reproduction mechanisms in mollusc species at a biochemical and physiological level; few have described these mechanisms at a molecular level, despite great commercial interest in several mollusc species. We investigated genes involved in gonad maturation of the marine scallop Argopecten purpuratus. A cDNA library was made from gonad tissue. After sequence analysis, 418 unique genes were characterized, of these, about 80% were of unknown function. Among the identified sequences, we analyzed the mRNA expression by real-time PCR of 7 genes involved in reproduction mechanisms, either directly: testis-specific serine/threonine-protein kinase (TSSK), vitellogenin (Vg), and spermatogenesis and centriole associated 1 (SCA) or indirectly: calcineurin A (CNA), centrin, RNA-specific adenosine deaminase (ADAR), and cytidine deaminase (CDA). The real-time PCR analyses were conducted on different tissues of mature and immature scallops (testis, ovary, immature gonad, gill, digestive gland and mantle). The genes studied, presented (1) a strong tissue-dependent expression pattern (higher expression in gonad tissues than in all other tissues) and (2) a sex- and maturation-specific expression pattern (except centrin). This is the first time that the expression of specific genes involved in reproduction mechanisms in a marine mollusc has been described at the molecular level.  相似文献   
957.
958.
Sustainable development requires the promotion of environmental management and a constant search for new technologies to treat a wide range of aquatic and terrestrial habitats contaminated by increasing anthropogenic activities. Bioremediation, i.e. the elimination of natural or xenobiotic pollutants by living organisms, is an environmentally friendly and cost-effective alternative to physico-chemical cleanup options. However, the strategy and outcome of bioremediation in open systems or confined environments depend on a variety of physico-chemical and biological factors that need to be assessed and monitored. In particular, microorganisms are key players in bioremediation applications, yet their catabolic potential and their dynamics in situ remain poorly characterized. To perform a comprehensive assessment of the biodegradative potential of a contaminated site and efficiently monitor changes in the structure and activities of microbial communities involved in bioremediation processes, sensitive, fast and large-scale methods are needed. Over the last few years, the scientific literature has revealed the progressive emergence of genomic high-throughput technologies in environmental microbiology and biotechnology. In this review, we discuss various high--throughput techniques and their possible--or already demonstrated-application to assess biotreatment of contaminated environments.  相似文献   
959.
960.
Phosphorylase kinase (PhK) is a large hexadecameric complex that catalyzes the phosphorylation and activation of glycogen phosphorylase (GP). It consists in four copies each of a catalytic subunit (gamma) and three regulatory subunits (alpha beta delta). Delta corresponds to endogenous calmodulin, whereas little is known on the molecular architecture of the large alpha and beta subunits, which probably arose from gene duplication. Here, using sensitive methods of sequence analysis, we show that the C-terminal domain (named domain D) of these alpha and beta subunits can be significantly related to calcineurin B-like (CBL) proteins. CBL are members of the EF-hand family that are involved in the regulation of plant-specific kinases of the CIPK/PKS family, and relieve autoinhibition of their target kinases by binding to their regulatory region. The relationship highlighted here suggests that PhK alpha and/or beta domain D may be involved in a similar regulation mechanism, a hypothesis which is supported by the experimental observation of a direct interaction between domain D of PhKalpha and the regulatory region of the Gamma subunit. This finding, together the identification of significant similarities of domain D with the preceding domain C, may help to understand the molecular mechanism by which PhK alpha and/or beta domain D might regulate PhK activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号