首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7603篇
  免费   675篇
  国内免费   4篇
  8282篇
  2023年   39篇
  2022年   81篇
  2021年   201篇
  2020年   110篇
  2019年   115篇
  2018年   143篇
  2017年   120篇
  2016年   211篇
  2015年   369篇
  2014年   441篇
  2013年   547篇
  2012年   646篇
  2011年   640篇
  2010年   396篇
  2009年   390篇
  2008年   486篇
  2007年   492篇
  2006年   463篇
  2005年   444篇
  2004年   360篇
  2003年   399篇
  2002年   361篇
  2001年   79篇
  2000年   54篇
  1999年   78篇
  1998年   84篇
  1997年   53篇
  1996年   48篇
  1995年   43篇
  1994年   45篇
  1993年   41篇
  1992年   37篇
  1991年   35篇
  1990年   27篇
  1989年   22篇
  1988年   15篇
  1987年   14篇
  1986年   20篇
  1985年   15篇
  1984年   11篇
  1983年   7篇
  1982年   9篇
  1981年   8篇
  1979年   8篇
  1978年   10篇
  1977年   6篇
  1976年   6篇
  1973年   13篇
  1972年   5篇
  1969年   7篇
排序方式: 共有8282条查询结果,搜索用时 0 毫秒
71.
Aspergillus fumigatus is an opportunistic pathogenic fungus which causes fatal invasive aspergillosis among immunocompromised patients. To obtain a better understanding of the key elements involved in A. fumigatus virulence and to identify possible drug targets, it is necessary to be able to generate gene-deletion strains. Unfortunately, the molecular techniques available do not include a rapid method to disrupt and identify essential genes. RNA interference, a process in which the presence of double-stranded RNA homologous to a gene of interest results in specific degradation of the corresponding message, has been successfully tested on A. fumigatus. We have shown that expression of double stranded RNA corresponding to portions of the ALB1/PKSP and FKS1 genes results in reduced mRNA levels for those genes, with phenotypic consequences similar to that of gene disruption. The two genes could also be subjected to simultaneous interference through expression of chimeric double-stranded RNA. Use of RNA interference in Aspergillus will allow easier examination of the phenotypic consequences of reducing expression of a gene of interest, especially for essential genes.  相似文献   
72.
1. The sodium and potassium conductances of the HODGKIN-HUXLEY model are simulated by a field effect transistor with a series resistor. This arrangement leads to a simple analog model of the excitable membrane (fig. 1 and 2). 2. Normally, the model is silent (fig. 3), but it becomes automatic (fig. 4) when the decay time (de-activation) of the potassium conductance is at least twice the recovery from inactivation time of the sodium conductance (taud greater than 2 tauri). 3. The effects of changes in sodium (fig. 5 and 6) and potassium (fig. 7, 8 and 9) concentration gradients upon the membrane potential and the ionic currents are easily studied when the model is silent or automatic. 4. When automatic, an increase in the potassium concentration gradient induces a lengthening of the period and ultimately, when the gradient is very high, spontaneous activity is blocked (fig. 9). On the other hand, increases of sodium gradient over 30% of normal value do not modify the period (fig 6). 5. The potassium concentration gradient modifies the excitability solely through membrane polarization (fig. 8), while sodium concentration has no effect on it (fig. 5). 6. Results with the model strengthen the hypothesis that tetraethylammonium (TEA) acts on both the maximum potassium conductance (gK) and the mechanism of sodium conductance inactivation (Tauh) to lengthen the action potential as observed on the Ranvier node (fig. 10). Effects of TEA on potassium conductance activation are also discussed. 7. Because of its simplicity and accuracy, this model lends itself easily to many other simulations.  相似文献   
73.
74.
Cyclin-dependent kinase subunit (CKS) proteins bind to cyclin-dependent kinases and target various proteins to phosphorylation and proteolysis during cell division. Crystal structures showed that CKS can exist both in a closed monomeric conformation when bound to the kinase and in an inactive C-terminal beta-strand-exchanged conformation. With the exception of the hinge loop, however, both crystal structures are identical, and no new protein interface is formed in the dimer. Protein engineering studies have pinpointed the crucial role of the proline 90 residue of the p13(suc1) CKS protein from Schizosaccharomyces pombe in the monomer-dimer equilibrium and have led to the concept of a loaded molecular spring of the beta-hinge motif. Mutation of this hinge proline into an alanine stabilizes the protein and prevents the occurrence of swapping. However, other mutations further away from the hinge as well as ligand binding can equally shift the equilibrium between monomer and dimer. To address the question of differential affinity through relief of the strain, here we compare the ligand binding of the monomeric form of wild-type S. pombe p13(suc1) and its hinge mutant P90A in solution by NMR spectroscopy. We indeed observed a 5-fold difference in affinity with the wild-type protein being the most strongly binding. Our structural study further indicates that both wild-type and the P90A mutant proteins adopt in solution the closed conformation but display different dynamic properties in the C-terminal beta-sheet involved in domain swapping and protein interactions.  相似文献   
75.
The X-ray structures of human aldose reductase holoenzyme in complex with the inhibitors Fidarestat (SNK-860) and Minalrestat (WAY-509) were determined at atomic resolutions of 0.92 A and 1.1 A, respectively. The hydantoin and succinimide moieties of the inhibitors interacted with the conserved anion-binding site located between the nicotinamide ring of the coenzyme and active site residues Tyr48, His110, and Trp111. Minalrestat's hydrophobic isoquinoline ring was bound in an adjacent pocket lined by residues Trp20, Phe122, and Trp219, with the bromo-fluorobenzyl group inside the "specificity" pocket. The interactions between Minalrestat's bromo-fluorobenzyl group and the enzyme include the stacking against the side-chain of Trp111 as well as hydrogen bonding distances with residues Leu300 and Thr113. The carbamoyl group in Fidarestat formed a hydrogen bond with the main-chain nitrogen atom of Leu300. The atomic resolution refinement allowed the positioning of hydrogen atoms and accurate determination of bond lengths of the inhibitors, coenzyme NADP+ and active-site residue His110. The 1'-position nitrogen atom in the hydantoin and succinimide moieties of Fidarestat and Minalrestat, respectively, form a hydrogen bond with the Nepsilon2 atom of His 110. For Fidarestat, the electron density indicated two possible positions for the H-atom in this bond. Furthermore, both native and anomalous difference maps indicated the replacement of a water molecule linked to His110 by a Cl-ion. These observations suggest a mechanism in which Fidarestat is bound protonated and becomes negatively charged by donating the proton to His110, which may have important implications on drug design.  相似文献   
76.

Background

Oestrogenic contaminants are widespread in the aquatic environment and have been shown to induce adverse effects in both wildlife (most notably in fish) and humans, raising international concern. Available detecting and testing systems are limited in their capacity to elucidate oestrogen signalling pathways and physiological impacts. Here we developed a transient expression assay to investigate the effects of oestrogenic chemicals in fish early life stages and to identify target organs for oestrogenic effects. To enhance the response sensitivity to oestrogen, we adopted the use of multiple tandem oestrogen responsive elements (EREc38) in a Tol2 transposon mediated Gal4ff-UAS system. The plasmid constructed (pTol2_ERE-TATA-Gal4ff), contains three copies of oestrogen response elements (3ERE) that on exposure to oestrogen induces expression of Gal4ff which this in turn binds Gal4-responsive Upstream Activated Sequence (UAS) elements, driving the expression of a second reporter gene, EGFP (Enhanced Green Fluorescent Protein).

Results

The response of our construct to oestrogen exposure in zebrafish embryos was examined using a transient expression assay. The two plasmids were injected into 1?C2 cell staged zebrafish embryos, and the embryos were exposed to various oestrogens including the natural steroid oestrogen 17?-oestradiol (E2), the synthetic oestrogen 17??- ethinyloestradiol (EE2), and the relatively weak environmental oestrogen nonylphenol (NP), and GFP expression was examined in the subsequent embryos using fluorescent microscopy. There was no GFP expression detected in unexposed embryos, but specific and mosaic expression of GFP was detected in the liver, heart, somite muscle and some other tissue cells for exposures to steroid oestrogen treatments (EE2; 10?ng/L, E2; 100?ng/L, after 72?h exposures). For the NP exposures, GFP expression was observed at 10???g NP/L after 72?h (100???g NP/L was toxic to the fish). We also demonstrate that our construct works in medaka, another model fish test species, suggesting the transient assay is applicable for testing oestrogenic chemicals in fish generally.

Conclusion

Our results indicate that the transient expression assay system can be used as a rapid integrated testing system for environmental oestrogens and to detect the oestrogenic target sites in developing fish embryos.  相似文献   
77.
Biomaterials are already widely used in medical sciences. The field of biomaterials began to shift to produce materials able to stimulate specific cellular responses at the molecular level. The combined efforts of cell biologists, engineers, materials scientists, mathematicians, geneticists, and clinicians are now used in tissue engineering to restore, maintain, or improve tissue functions or organs. This rapidly expanding approach combines the fields of material sciences and cell biology for the molecular design of polymeric scaffolds with appropriate 3D configuration and biological responses. Future developments for new blood vessels will require improvements in technology of materials and biotechnology together with the increased knowledge of the interactions between materials, blood, and living tissues. Biomaterials represent a crucial mainstay for all these studies.  相似文献   
78.
One particular strategy to render anticancer therapies efficient consists of converting the patient's own tumor cells into therapeutic vaccines, via the induction of immunogenic cell death (ICD). One of the hallmarks of ICD dwells in the active release of ATP by cells committed to undergo, but not yet having succumbed to, apoptosis. We observed that the knockdown of essential autophagy-related genes (ATG3, ATG5, ATG7 and BECN1) abolishes the pre-apoptotic secretion of ATP by several human and murine cancer cell lines undergoing ICD. Accordingly, autophagy-competent, but not autophagy-deficient, tumor cells treated with ICD inducers in vitro could induce a tumor-specific immune response in vivo. Cancer cell lines stably depleted of ATG5 or ATG7 normally generate tumors in vivo, and such autophagy-deficient neoplasms, upon systemic treatment with ICD inducers, exhibit the same levels of apoptosis (as monitored by nuclear shrinkage and caspase-3 activation) and necrosis (as determined by following the kinetics of HMGB1 release) as their autophagy-proficient counterparts. However, autophagy-incompetent cancers fail to release ATP, to recruit immune effectors into the tumor bed and to respond to chemotherapy in conditions in which autophagy-competent tumors do so. The intratumoral administration of ecto-ATPase inhibitors increases extracellular ATP concentrations, re-establishes the therapy-induced recruitment of dendritic cells and T cells into the tumor bed, and restores the chemotherapeutic response of autophagy-deficient cancers. Altogether, these results suggest that autophagy-incompetent tumor cells escape from chemotherapy-induced (and perhaps natural?) immunosurveillance because they are unable to release ATP.  相似文献   
79.
Autophagic and endocytic pathways are tightly regulated membrane rearrangement processes that are crucial for homeostasis, development and disease. Autophagic cargo is delivered from autophagosomes to lysosomes for degradation through a complex process that topologically resembles endosomal maturation. Here, we report that a Beclin1-binding autophagic tumour suppressor, UVRAG, interacts with the class C Vps complex, a key component of the endosomal fusion machinery. This interaction stimulates Rab7 GTPase activity and autophagosome fusion with late endosomes/lysosomes, thereby enhancing delivery and degradation of autophagic cargo. Furthermore, the UVRAG-class-C-Vps complex accelerates endosome-endosome fusion, resulting in rapid degradation of endocytic cargo. Remarkably, autophagosome/endosome maturation mediated by the UVRAG-class-C-Vps complex is genetically separable from UVRAG-Beclin1-mediated autophagosome formation. This result indicates that UVRAG functions as a multivalent trafficking effector that regulates not only two important steps of autophagy - autophagosome formation and maturation - but also endosomal fusion, which concomitantly promotes transport of autophagic and endocytic cargo to the degradative compartments.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号