首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5185篇
  免费   459篇
  国内免费   3篇
  2024年   3篇
  2023年   18篇
  2022年   32篇
  2021年   100篇
  2020年   65篇
  2019年   52篇
  2018年   77篇
  2017年   67篇
  2016年   124篇
  2015年   234篇
  2014年   272篇
  2013年   346篇
  2012年   426篇
  2011年   430篇
  2010年   281篇
  2009年   266篇
  2008年   331篇
  2007年   353篇
  2006年   353篇
  2005年   345篇
  2004年   305篇
  2003年   338篇
  2002年   297篇
  2001年   47篇
  2000年   31篇
  1999年   54篇
  1998年   71篇
  1997年   43篇
  1996年   43篇
  1995年   32篇
  1994年   34篇
  1993年   29篇
  1992年   26篇
  1991年   21篇
  1990年   14篇
  1989年   12篇
  1988年   5篇
  1987年   9篇
  1986年   11篇
  1985年   9篇
  1984年   8篇
  1983年   3篇
  1982年   5篇
  1981年   4篇
  1979年   5篇
  1978年   6篇
  1973年   4篇
  1972年   1篇
  1966年   1篇
  1936年   1篇
排序方式: 共有5647条查询结果,搜索用时 46 毫秒
171.
The aim of the present study was the molecular profiling of different Ph+ chronic myelogenous leukemia (CML) cell lines (LAMA84, K562, and KCL22) by a proteomic approach. By employing two-dimensional gel electrophoresis combined with mass spectrometry analysis, we have identified 191 protein spots corresponding to 142 different proteins. Among these, 63% were cancer-related proteins and 74% were described for the first time in leukemia cells. Multivariate analysis highlighted significant differences in the global proteomic profile of the three CML cell lines. In particular, the detailed analysis of 35 differentially expressed proteins revealed that LAMA84 cells preferentially expressed proteins associated with an invasive behavior, while K562 and KCL22 cells preferentially expressed proteins involved in drug resistance. These data demonstrate that these CML cell lines, although representing the same pathological phenotype, show characteristics in their protein expression profile that suggest different phenotypic leukemia subclasses. These data contribute a new potential characterization of the CML phenotype and may help to understand interpatient variability in the progression of disease and in the efficacy of a treatment.  相似文献   
172.
173.
Activity-dependent protein phosphorylation is a highly dynamic yet tightly regulated process essential for cellular signaling. Although recognized as critical for neuronal functions, the extent and stoichiometry of phosphorylation in brain cells remain undetermined. In this study, we resolved activity-dependent changes in phosphorylation stoichiometry at specific sites in distinct subcellular compartments of brain cells. Following highly sensitive phosphopeptide enrichment using immobilized metal affinity chromatography and mass spectrometry, we isolated and identified 974 unique phosphorylation sites on 499 proteins, many of which are novel. To further explore the significance of specific phosphorylation sites, we used isobaric peptide labels and determined the absolute quantity of both phosphorylated and non-phosphorylated peptides of candidate phosphoproteins and estimated phosphorylation stoichiometry. The analyses of phosphorylation dynamics using differentially stimulated synaptic terminal preparations revealed activity-dependent changes in phosphorylation stoichiometry of target proteins. Using this method, we were able to differentiate between distinct isoforms of Ca2+/calmodulin-dependent protein kinase (CaMKII) and identify a novel activity-regulated phosphorylation site on the glutamate receptor subunit GluR1. Together these data illustrate that mass spectrometry-based methods can be used to determine activity-dependent changes in phosphorylation stoichiometry on candidate phosphopeptides following large scale phosphoproteome analysis of brain tissue.  相似文献   
174.
175.
176.
As the mammalian central nervous system matures, its regenerative ability decreases, leading to incomplete or non‐recovery from the neurodegenerative diseases and central nervous system insults that we are increasingly facing in our aging world population. Current neuroregenerative research is largely directed toward identifying the molecular and cellular players that underlie central nervous system repair, yet it repeatedly ignores the aging context in which many of these diseases appear. Using an optic nerve crush model in a novel biogerontology model, that is, the short‐living African turquoise killifish, the impact of aging on injury‐induced optic nerve repair was investigated. This work reveals an age‐related decline in axonal regeneration in female killifish, with different phases of the repair process being affected depending on the age. Interestingly, as in mammals, both a reduced intrinsic growth potential and a non‐supportive cellular environment seem to lie at the basis of this impairment. Overall, we introduce the killifish visual system and its age‐dependent regenerative ability as a model to identify new targets for neurorepair in non‐regenerating individuals, thereby also considering the effects of aging on neurorepair.  相似文献   
177.
178.
Although testosterone deficiency (TD) may be present in one out of five men 40 years or older, the factors responsible for TD remain largely unknown. Leydig stem cells (LSCs) differentiate into adult Leydig cells (ALC) and produce testosterone in the testes under the pulsatile control of luteinizing hormone (LH) from the pituitary gland. However, recent studies have suggested that the testicular microenvironment (TME), which is comprised of Sertoli and peritubular myoid cells (PMC), plays an instrumental role in LSC differentiation and testosterone production under the regulation of the desert hedgehog signaling pathway (DHH). It was hypothesized that the TME releases paracrine factors to modulate LSC differentiation. For this purpose, cells (Sertoli, PMCs, LSCs, and ALCs) were extracted from men undergoing testis biopsies for sperm retrieval and were evaluated for the paracrine factors in the presence or absence of the TME (Sertoli and PMC). The results demonstrated that TME secretes leptin, which induces LSC differentiation and increases testosterone production. Leptin’s effects on LSC differentiation and testosterone production, however, are inversely concentration-dependent: positive at low doses and negative at higher doses. Mechanistically, leptin binds to the leptin receptor on LSCs and induces DHH signaling to modulate LSC differentiation. Leptin-DHH regulation functions unidirectionally insofar as DHH gain or loss of function has no effect on leptin levels. Taken together, these findings identify leptin as a key paracrine factor released by cells within the TME that modulates LSC differentiation and testosterone release from mature Leydig cells, a finding with important clinical implications for TD.Subject terms: Stem-cell differentiation, Translational research  相似文献   
179.
180.
Summary— The amoebae of the myxomycete Physarum polycephalum are of interest in order to analyze the morphogenesis of the microtubule and microfilament cytoskeleton during cell cycle and flagellation. The amoebal interphase microtubule cytoskeleton consists of 2 distinct levels of organization, which correspond to different physiological roles. The first level is composed of the 2 kinetosomes or centrioles and their associated structures. The anterior and posterior kinetosomes forming the anterior and posterior flagella are morphologically distinguishable. Each centriole plays a role in the morphogenesis of its associated satellites and specific microtubule arrays. The 2 distinct centrioles correspond to the 2 successive maturation stages of the pro-centrioles which are built during prophase. The second level of organization consists of a prominent microtubule organizing center (mtoc 1) to which the anterior centriole is attached at least during interphase. This mtoc plays a role in the formation of the mitotic pole. These observations based on ultrastructural and physiological analyses of the amoebal cystoskeleton are now being extended to the biochemical level. The complex formed by the 2 centrioles and the mtoc 1 has been purified without modifying the microtubule-nucleating activity of the mtoc 1. Several microtubule-associated proteins have been characterized by their ability to bind taxol-stabilized microtubules. Their functions (e.g., microtubule assembly, protection of microtubules against dilution or cold treatment, phosphorylating and ATPase activities) are under investigation. These biochemical approaches could allow in vitro analysis of the morphogenesis of the amoebal microtubule cytoskeleton.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号