首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5346篇
  免费   504篇
  国内免费   3篇
  2024年   3篇
  2023年   18篇
  2022年   53篇
  2021年   101篇
  2020年   66篇
  2019年   52篇
  2018年   79篇
  2017年   73篇
  2016年   129篇
  2015年   244篇
  2014年   278篇
  2013年   351篇
  2012年   433篇
  2011年   436篇
  2010年   285篇
  2009年   268篇
  2008年   344篇
  2007年   363篇
  2006年   359篇
  2005年   350篇
  2004年   312篇
  2003年   341篇
  2002年   303篇
  2001年   50篇
  2000年   36篇
  1999年   62篇
  1998年   75篇
  1997年   47篇
  1996年   47篇
  1995年   33篇
  1994年   35篇
  1993年   32篇
  1992年   33篇
  1991年   22篇
  1990年   14篇
  1989年   16篇
  1988年   6篇
  1987年   14篇
  1986年   16篇
  1985年   12篇
  1984年   9篇
  1983年   4篇
  1982年   7篇
  1981年   7篇
  1979年   10篇
  1978年   9篇
  1977年   2篇
  1974年   2篇
  1973年   4篇
  1972年   2篇
排序方式: 共有5853条查询结果,搜索用时 15 毫秒
121.
In eukaryotes, permanent inhibition of the non‐homologous end joining (NHEJ) repair pathway at telomeres ensures that chromosome ends do not fuse. In budding yeast, binding of Rap1 to telomere repeats establishes NHEJ inhibition. Here, we show that the Uls1 protein is required for the maintenance of NHEJ inhibition at telomeres. Uls1 protein is a non‐essential Swi2/Snf2‐related translocase and a Small Ubiquitin‐related Modifier (SUMO)‐Targeted Ubiquitin Ligase (STUbL) with unknown targets. Loss of Uls1 results in telomere–telomere fusions. Uls1 requirement is alleviated by the absence of poly‐SUMO chains and by rap1 alleles lacking SUMOylation sites. Furthermore, Uls1 limits the accumulation of Rap1 poly‐SUMO conjugates. We propose that one of Uls1 functions is to clear non‐functional poly‐SUMOylated Rap1 molecules from telomeres to ensure the continuous efficiency of NHEJ inhibition. Since Uls1 is the only known STUbL with a translocase activity, it can be the general molecular sweeper for the clearance of poly‐SUMOylated proteins on DNA in eukaryotes.  相似文献   
122.
Progesterone, the cationic amphiphile U18666A and a phospholipase inhibitor (Methyl Arachidonyl Fluoro Phosphonate, MAFP) inhibited by 70%–90% HIV production in viral reservoir cells, i.e. human THP-1 monocytes and monocyte-derived macrophages (MDM). These compounds triggered an inhibition of fluid phase endocytosis (macropinocytosis) and modified cellular lipid homeostasis since endosomes accumulated filipin-stained sterols and Bis(Monoacylglycero)Phosphate (BMP). BMP was quantified using a new cytometry procedure and was increased by 1.25 times with MAFP, 1.7 times with U18666A and 2.5 times with progesterone. MAFP but not progesterone or U18666A inhibited the hydrolysis of BMP by the Pancreatic Lipase Related Protein 2 (PLRP2) as shown by in-vitro experiments. The possible role of sterol transporters in steroid-mediated BMP increase is discussed.  相似文献   
123.
We have produced and purified an active site mutant of the Escherichia coli cyclopropane fatty acid synthase (CFAS) by replacing the strictly conserved G236 within cyclopropane synthases, by a glutamate residue, which corresponds to E146 of the homologous mycolic acid methyltransferase, Hma, producing hydroxymethyl mycolic acids. The G236E CFAS mutant had less than 1% of the in vitro activity of the wild type enzyme. We expressed the G236E CFAS mutant in an E. coli (DE3) strain in which the chromosomal cfa gene had been deleted. After extraction of phospholipids and conversion into the corresponding fatty acid methyl esters (FAMEs), we observed the formation of cyclopropanated FAMEs suggesting that the mutant retained some of the normal activity in vivo. However, we also observed the formation of new C17 methyl-branched unsaturated FAMEs whose structures were determined using GC/MS and NMR analyses. The double bond was located at different positions 8, 9 or 10, and the methyl group at position 10 or 9. Thus, this new FAMEs are likely arising from a 16:1 acyl chain of a phospholipid that had been transformed by the G236E CFAS mutant in vivo. The reaction catalyzed by this G236E CFAS mutant thus starts by the methylation of the unsaturated acyl chain at position 10 or 9 yielding a carbocation at position 9 or 10 respectively. It follows then two competing steps, a normal cyclopropanation or hydride shift/elimination events giving different combinations of alkenes. This study not only provides further evidence that cyclopropane synthases (CSs) form a carbocationic intermediate but also opens the way to CSs engineering for the synthesis of non-natural fatty acids.  相似文献   
124.
Mucins belong to a heterogeneous family of large O-glycoproteins composed of a long peptidic chain called apomucin on which are linked hundreds of oligosaccharidic chains. Among mucins, membrane-bound mucins are modular proteins and have a structural organization usually containing Pro/Thr/Ser-rich O-glycosylated domains (PTS), EGF-like and SEA domains. Via these modular domains, the membrane-bound mucins participate in cell signalling and cell interaction with their environment in normal and pathological conditions. Moreover, the recent knowledge of these domains and their biological activities led to the development of new therapeutic approaches involving mucins. In this review, we show 3D structures of EGF and SEA domains. We also describe the functional features of the evolutionary conserved domains of membrane-bound mucins and discuss consequences of splice events.  相似文献   
125.

Background

Three mutations (two missense and one frameshift) in the NOD2 gene are associated with Crohn's disease (CD) in a proportion of patients with Crohn's disease in North America, Europe and Australia. These three mutations are not found in Indian patients with CD. We undertook new studies to identify polymorphisms in the NOD2 gene in the Indian population and to detect whether any of these were associated with inflammatory bowel disease (IBD) in this population.

Methods

Individual exons of the NOD2 gene were amplified by PCR and subjected to denaturing high performance liquid chromatography (DHPLC) to detect heteroduplex formation. All 12 exons of the NOD2 gene were amplified and Sanger-sequenced to detect polymorphisms in the NOD2 gene. 310 patients with CD, 318 patients with ulcerative colitis (UC) and 442 healthy controls (HC) were recruited for association studies. DNA from these participants was evaluated for the identified eight polymorphisms by Sequenom analysis.

Results

Heteroduplex formation was noted by DHPLC in exons 2 and 4 of the NOD2 gene. Sequencing of the entire NOD2 gene data revealed eight polymorphisms – rs2067085, rs2066842, rs2066843, rs1861759, rs2111235, rs5743266, rs2076753, and rs5743291 – of which the latter four were described for the first time in Indians. None of these polymorphisms was associated with CD. The SNPs rs2066842 and rs2066843 were in significant linkage disequilibrium. Both SNPs showed a significant association with UC (P = 0.03 and 0.04 respectively; odds ratio 1.44 and 1.41 respectively).

Conclusion

Four NOD2 polymorphisms were identified for the first time in the Indian population. Of 8 NOD2 polymorphisms, none were associated with CD but two were weakly associated with UC. NOD2 polymorphisms do not play a major role in CD genesis in India.  相似文献   
126.
A fossil millipede representative of the order Stemmiulida is described on the basis of a well-preserved adult female trapped in amber from the Miocene of Simojovel, Chiapas, south-eastern México. The fossil specimen is named as Parastemmiulus elektron, a new genus and species. As observed in extant stemmiulids, this fossil shows a reduced number of ocelli, the distal larger than the proximal, as well as a total of 46 trunk segments including 2 apodous segments in front of the telson. The head of this ancient stemmiulid has three ocelli and a Tömösváry organ, characteristics not reported before in Stemmiulida, requiring the diagnosis of the order to be emended.http://zoobank.org/urn:lsid:zoobank.org:pub:361400A8-37D4-421F-B4FD-A0AE63BE538C  相似文献   
127.
Flavoenzymes have been extensively studied for their structural and mechanistic properties because they find potential application as industrial biocatalysts. They are attractive for biocatalysis because of the selectivity, controllability and efficiency of their reactions. Some of these enzymes catalyse the oxidative modification of protein substrates. Among them oxygenases (monoxoygenases and dioxygenases) are of special interest because they are highly entantio as well as regio-selective and can be used for oxyfunctionalisation. Dioxygenase enzymes catalyse oxygenation reactions in which both di-oxygen atoms are incorporated into the product. A dioxygenase enzyme purified from Aspergillus fumigatus MC8 was subjected to protein digestion followed by peptide sequencing. The sequence analysis of the peptide fragments resulted in identifying its match with that of an extracellular dioxygenase sequence from the same species of fungus existing in the protein database. The sequence was submitted to protein homology/analogy recognition engine online server for homology modelling and the 3D structure was predicted. Subsequently, the in silico studies of the enzyme–substrate (protein–ligand) interaction were carried out by using the method of molecular docking simulations wherein the modelled dioxygenase enzyme (protein) was docked with the substrates (ligands), catechin and epicatechin.  相似文献   
128.
We have shown that the circulating vaccine-derived polioviruses responsible for poliomyelitis outbreaks in Madagascar have recombinant genomes composed of sequences encoding capsid proteins derived from poliovaccine Sabin, mostly type 2 (PVS2), and sequences encoding nonstructural proteins derived from other human enteroviruses. Interestingly, almost all of these recombinant genomes encode a nonstructural 3A protein related to that of field coxsackievirus A17 (CV-A17) strains. Here, we investigated the repercussions of this exchange, by assessing the role of the 3A proteins of PVS2 and CV-A17 and their putative cellular partners in viral replication. We found that the Golgi protein acyl-coenzyme A binding domain-containing 3 (ACBD3), recently identified as an interactor for the 3A proteins of several picornaviruses, interacts with the 3A proteins of PVS2 and CV-A17 at viral RNA replication sites, in human neuroblastoma cells infected with either PVS2 or a PVS2 recombinant encoding a 3A protein from CV-A17 [PVS2-3A(CV-A17)]. The small interfering RNA-mediated downregulation of ACBD3 significantly increased the growth of both viruses, suggesting that ACBD3 slowed viral replication. This was confirmed with replicons. Furthermore, PVS2-3A(CV-A17) was more resistant to the replication-inhibiting effect of ACBD3 than the PVS2 strain, and the amino acid in position 12 of 3A was involved in modulating the sensitivity of viral replication to ACBD3. Overall, our results indicate that exchanges of nonstructural proteins can modify the relationships between enterovirus recombinants and cellular interactors and may thus be one of the factors favoring their emergence.  相似文献   
129.
The tumultuous events of summer 2009 have brought Uighur protests and minority mobilization in the Xinjiang Uighur Autonomous Region (XUAR) to the forefront. But this focus overlooks similar protests organized by various groups of Han Chinese settlers over the years. This paper contributes to the body of literature on minority mobilization and ethnic relations in Xinjiang by illustrating how the political mobilization of a group that is simultaneously a national majority and a regional minority differs substantially from ‘traditional’ minority mobilization. Reviewing the main instances of Han Chinese political mobilization since the XUAR was created in 1955, I argue that two factors are particularly important in enabling their mobilization: the Han Chinese's subjective perception of discrimination and their close ethnic ties to the state. This paper concludes with a discussion on the presence of a cycle of protests between Han settlers and the Uighurs in Xinjiang.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号