首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1183篇
  免费   87篇
  2023年   11篇
  2022年   19篇
  2021年   33篇
  2020年   21篇
  2019年   27篇
  2018年   36篇
  2017年   29篇
  2016年   41篇
  2015年   58篇
  2014年   63篇
  2013年   117篇
  2012年   99篇
  2011年   80篇
  2010年   59篇
  2009年   50篇
  2008年   72篇
  2007年   52篇
  2006年   57篇
  2005年   56篇
  2004年   40篇
  2003年   53篇
  2002年   42篇
  2001年   14篇
  2000年   4篇
  1999年   12篇
  1998年   11篇
  1997年   6篇
  1996年   9篇
  1995年   8篇
  1994年   9篇
  1993年   8篇
  1992年   5篇
  1991年   4篇
  1990年   6篇
  1989年   3篇
  1988年   5篇
  1987年   8篇
  1986年   3篇
  1985年   4篇
  1984年   6篇
  1983年   2篇
  1978年   3篇
  1977年   2篇
  1968年   2篇
  1967年   2篇
  1966年   2篇
  1935年   1篇
  1933年   1篇
  1915年   1篇
  1911年   1篇
排序方式: 共有1270条查询结果,搜索用时 921 毫秒
81.
Enzymes that convert starch and dextrins to α,α-trehalose and glucose were found in cell homogenates of the hyperthermophilic acidophilic archaeon Sulfolobus shibatae DMS 5389. Three enzymes were purified and characterized. The first, the S. shibatae trehalosyl dextrin-forming enzyme (SsTDFE), transformed starch and dextrins to the corresponding trehalosyl derivatives with an intramolecular transglycosylation process that converted the glucosidic linkage at the reducing end from α-1,4 to α-1,1. The second, the S. shibatae trehalose-forming enzyme (SsTFE), hydrolyzed the α-1,4 linkage adjacent to the α-1,1 bond of trehalosyl dextrins, forming trehalose and lower molecular weight dextrins. These two enzymes had molecular masses of 80 kDa and 65 kDa, respectively, and showed the highest activities at pH 4.5. The apparent optimal temperature for activity was 70°C for SsTDFE and 85°C for SsTFE. The third enzyme identified was an α-glycosidase (SsαGly), which catalyzed the hydrolysis of the α-1,4 glucosidic linkages in starch and dextrins, releasing glucose in a stepwise manner from the nonreducing end of the polysaccharide chain. The enzyme had a molecular mass of 313 kDa and showed the highest activity at pH 5.5 and at 85°C. Received: October 29, 1997 / Accepted: April 29, 1998  相似文献   
82.
Brazil ranked second only to the United States in hectares planted to genetically modified crops in 2013. Recently corn producers in the Cerrado region reported that the control of Spodoptera frugiperda with Bt corn expressing Cry1Fa has decreased, forcing them to use chemicals to reduce the damage caused by this insect pest. A colony of S. frugiperda was established from individuals collected in 2013 from Cry1Fa corn plants (SfBt) in Brazil and shown to have at least more than ten-fold higher resistance levels compared with a susceptible colony (Sflab). Laboratory assays on corn leaves showed that in contrast to SfLab population, the SfBt larvae were able to survive by feeding on Cry1Fa corn leaves. The SfBt population was maintained without selection for eight generations and shown to maintain high levels of resistance to Cry1Fa toxin. SfBt showed higher cross-resistance to Cry1Aa than to Cry1Ab or Cry1Ac toxins. As previously reported, Cry1A toxins competed the binding of Cry1Fa to brush border membrane vesicles (BBMV) from SfLab insects, explaining cross-resistance to Cry1A toxins. In contrast Cry2A toxins did not compete Cry1Fa binding to SfLab-BBMV and no cross-resistance to Cry2A was observed, although Cry2A toxins show low toxicity to S. frugiperda. Bioassays with Cry1AbMod and Cry1AcMod show that they are highly active against both the SfLab and the SfBt populations. The bioassay data reported here show that insects collected from Cry1Fa corn in the Cerrado region were resistant to Cry1Fa suggesting that resistance contributed to field failures of Cry1Fa corn to control S. frugiperda.  相似文献   
83.
G protein-gated K+ channels (GIRK; Kir3), activated by Gβγ subunits derived from Gi/o proteins, regulate heartbeat and neuronal excitability and plasticity. Both neurotransmitter-evoked (Ievoked) and neurotransmitter-independent basal (Ibasal) GIRK activities are physiologically important, but mechanisms of Ibasal and its relation to Ievoked are unclear. We have previously shown for heterologously expressed neuronal GIRK1/2, and now show for native GIRK in hippocampal neurons, that Ibasal and Ievoked are interrelated: the extent of activation by neurotransmitter (activation index, Ra) is inversely related to Ibasal. To unveil the underlying mechanisms, we have developed a quantitative model of GIRK1/2 function. We characterized single-channel and macroscopic GIRK1/2 currents, and surface densities of GIRK1/2 and Gβγ expressed in Xenopus oocytes. Based on experimental results, we constructed a mathematical model of GIRK1/2 activity under steady-state conditions before and after activation by neurotransmitter. Our model accurately recapitulates Ibasal and Ievoked in Xenopus oocytes, HEK293 cells and hippocampal neurons; correctly predicts the dose-dependent activation of GIRK1/2 by coexpressed Gβγ and fully accounts for the inverse Ibasal-Ra correlation. Modeling indicates that, under all conditions and at different channel expression levels, between 3 and 4 Gβγ dimers are available for each GIRK1/2 channel. In contrast, available Gαi/o decreases from ~2 to less than one Gα per channel as GIRK1/2''s density increases. The persistent Gβγ/channel (but not Gα/channel) ratio support a strong association of GIRK1/2 with Gβγ, consistent with recruitment to the cell surface of Gβγ, but not Gα, by GIRK1/2. Our analysis suggests a maximal stoichiometry of 4 Gβγ but only 2 Gαi/o per one GIRK1/2 channel. The unique, unequal association of GIRK1/2 with G protein subunits, and the cooperative nature of GIRK gating by Gβγ, underlie the complex pattern of basal and agonist-evoked activities and allow GIRK1/2 to act as a sensitive bidirectional detector of both Gβγ and Gα.  相似文献   
84.
Predicted increases in the frequency and duration of drought are expected to negatively affect tree vitality, but we know little about how water shortage will influence needle anatomy and thereby the trees’ photosynthetic and hydraulic capacity. In this study, we evaluated anatomical changes in sun and shade needles of 20‐year‐old Norway spruce trees exposed to artificial drought stress. Canopy position was found to be important for needle structure, as sun needles had significantly higher values than shade needles for all anatomical traits (i.e., cross‐sectional needle area, number of tracheids in needle, needle hydraulic conductivity, and tracheid lumen area), except proportion of xylem area per cross‐sectional needle area. In sun needles, drought reduced all trait values by 10–40%, whereas in shade needles, only tracheid maximum diameter was reduced by drought. Due to the relatively weaker response of shade needles than sun needles in drought‐stressed trees, the difference between the two needle types was reduced by 25% in the drought‐stressed trees compared to the control trees. The observed changes in needle anatomy provide new understanding of how Norway spruce adapts to drought stress and may improve predictions of how forests will respond to global climate change.  相似文献   
85.

Background

This study aimed to evaluate the relationship between cigarette smoking and coronary atherosclerotic burden, volume and composition as determined in-vivo by grayscale and virtual histology (VH) intravascular ultrasound (IVUS).

Methods and Results

Between 2008 and 2011, (VH-)IVUS of a non-culprit coronary artery was performed in 581 patients undergoing coronary angiography. To account for differences in baseline characteristics, current smokers were matched to never smokers by age, gender and indication for catheterization, resulting in 280 patients available for further analysis. Coronary atherosclerotic plaque volume, burden, composition (fibrous, fibro-fatty, dense calcium and necrotic core) and high-risk lesions (VH-IVUS derived thin-cap fibroatheroma (TCFA), plaque burden ≥70%, minimal luminal area ≤4.0 mm2) were assessed. Cigarette smoking showed a tendency towards higher coronary plaque burden (mean±SD, 38.6±12.5% in current versus 36.4±11.0% in never smokers, p = 0.080; and odds ratio (OR) of current smoking for plaque burden above versus below the median 1.69 (1.04–2.75), p = 0.033). This effect was driven by an association in patients presenting with an acute coronary syndrome (ACS) (current smokers, plaque burden 38.3±12.8% versus never smokers, plaque burden 35.0±11.2%, p = 0.049; OR 1.88 (1.02–3.44), p = 0.042). Fibrous tissue tended to be lower in current smokers (mean±SD, 57.7±10.5% versus 60.4±12.6%, p = 0.050) and fibro-fatty tissue was higher in current smokers (median[IQR], 9.6[6.0–13.7]% versus 8.6[5.8–12.2]%, p = 0.039). However, differences in percentage necrotic core and dense calcium could not be demonstrated. Also, no differences were found with regard to high-risk lesions.

Conclusions

An association between smoking and degree of coronary atherosclerosis was present in patients undergoing coronary angiography who presented with ACS. Although smoking was associated with higher fibro-fatty percentage, no associations could be demonstrated with percentage necrotic core, nor with VH-IVUS derived TCFA lesions. Since the magnitude of the differences in both degree and composition of atherosclerosis was modest, clinical relevance of the findings may be questioned.  相似文献   
86.
Joubert syndrome (JBTS) is a recessive ciliopathy in which a subset of affected individuals also have the skeletal dysplasia Jeune asphyxiating thoracic dystrophy (JATD). Here, we have identified biallelic truncating CSPP1 (centrosome and spindle pole associated protein 1) mutations in 19 JBTS-affected individuals, four of whom also have features of JATD. CSPP1 mutations explain ∼5% of JBTS in our cohort, and despite truncating mutations in all affected individuals, the range of phenotypic severity is broad. Morpholino knockdown of cspp1 in zebrafish caused phenotypes reported in other zebrafish models of JBTS (curved body shape, pronephric cysts, and cerebellar abnormalities) and reduced ciliary localization of Arl13b, further supporting loss of CSPP1 function as a cause of JBTS. Fibroblasts from affected individuals with CSPP1 mutations showed reduced numbers of primary cilia and/or short primary cilia, as well as reduced axonemal localization of ciliary proteins ARL13B and adenylyl cyclase III. In summary, CSPP1 mutations are a major cause of the Joubert-Jeune phenotype in humans; however, the mechanism by which these mutations lead to both JBTS and JATD remains unknown.  相似文献   
87.
Lipid homeostasis is well-known in oleaginous yeasts, but there are few non-oleaginous yeast models apart from Saccharomyces cerevisiae. We are proposing the non-oleaginous yeast Candida zeylanoides QU 33 as model. The aim of this study was to investigate the influence of the carbon/nitrogen ratio and the type of nitrogen source upon oil accumulation by this yeast grown on shake flask cultures. The maximum biomass was obtained in yeast extract (2.39?±?0.19 g/l), followed by peptone (2.24?±?0.05 g/l), while the highest content of microbial oil (0.35?±?0.01 g/l) and the maximum lipid yield (15.63 %) were achieved with peptone. Oleic acid was the predominant cellular fatty acid in all culture media (>32.23 %), followed by linoleic (>15.79 %) and palmitic acids (>13.47 %). The highest lipid yield using glucose and peptone was obtained at the C/N ratio of 200:1.  相似文献   
88.
The effects of extremely low frequency magnetic fields (ELF‐MF) on acetylcholinesterase (AChE) activity of synaptosomal membranes were investigated. Sinusoidal fields with 50 Hz frequency and different amplitudes caused AChE activity to decrease about 27% with a threshold of about 0.74 mT. The decrease in enzymatic activity was independent of the time of permanence in the field and was completely reversible. Identical results were obtained with exposure to static MF of the same amplitudes. Moreover, the inhibitory effects on enzymatic activity are spread over frequency windows with different maximal values at 60, 200, 350, and 475 Hz. When synaptosomal membranes were solubilized with Triton, ELF‐MF did not affect AChE activity, suggesting the crucial role of the membrane, as well as the lipid linkage of the enzyme, in determining the conditions for inactivation. The results are discussed in order to give an interpretation at molecular level of the macroscopic effects produced by ELF‐MF on biological systems, in particular the alterations of embryo development in many organisms due to acetylcholine accumulation. Bioelectromagnetics 31:270–276, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   
89.
Fcγ Receptor (FcR)-mediated phagocytosis by macrophages requires phosphatidylinositol 3-kinase (PI3K) and activation of the Rho-family GTPases Cdc42 and Rac1. Cdc42 is activated at the advancing edge of the phagocytic cup, where actin is concentrated, and is deactivated at the base of the cup. The timing of 3′ phosphoinositide (3′PI) concentration changes in cup membranes suggests a role for 3′PIs in deactivation of Cdc42. This study examined the relationships between PI3K and the patterns of Rho-family GTPase signaling during phagosome formation. Inhibition of PI3K resulted in persistently active Cdc42 and Rac1, but not Rac2, in stalled phagocytic cups. Patterns of 3′PIs and Rho-family GTPase activities during phagocytosis of 5- and 2-μm-diameter microspheres indicated similar underlying mechanisms despite particle size–dependent sensitivities to PI3K inhibition. Expression of constitutively active Cdc42(G12V) increased 3′PI concentrations in plasma membranes and small phagosomes, indicating a role for Cdc42 in PI3K activation. Cdc42(G12V) inhibited phagocytosis at a later stage than inhibition by dominant negative Cdc42(N17). Together, these studies identified a Cdc42 activation cycle organized by PI3K, in which FcR-activated Cdc42 stimulates PI3K and actin polymerization, and the subsequent increase of 3′PIs in cup membranes inactivates Cdc42 to allow actin recycling necessary for phagosome formation.  相似文献   
90.
Background: Selective cyclooxygenase‐2 (COX‐2) inhibitors and proton pump inhibitors may exert immune‐mediated effects in human gastric mucosa. T‐cell immune response plays a role in Helicobacter pylori‐induced pathogenesis. This study evaluated effects of celecoxib and lansoprazole on T‐helper (Th) 1 and Th2 immune response in human gastric mucosa. Methods: Dyspeptic patients with or without osteoarticular pain were given one of the following 4‐week therapies: celecoxib 200 mg, celecoxib 200 mg plus lansoprazole 30 mg, and lansoprazole 30 mg daily. Expression of COX‐2, T‐bet, and pSTAT6 and production of prostaglandin E2 (PGE2), interferon (IFN)‐γ, and interleukin (IL)‐4 were determined in gastric biopsies before and after therapy. Histology was evaluated. Results: Cyclooxygenase‐2 expression and PGE2 production was higher, and Th1 signaling pathway was predominant in H. pylori‐infected vs. uninfected patients. T‐bet expression and IFN‐γ production increased, while STAT6 activation and IL‐4 production decreased following therapy with celecoxib and celecoxib plus lansoprazole, respectively. Th1 and Th2 signaling pathways down‐regulated after therapy with lansoprazole, and this was associated with an improvement of gastritis. Effect of therapy was not affected by H. pylori status. Conclusion: Celecoxib and lansoprazole modulate Th1/Th2 immune response in human gastric mucosa. The use of these drugs may interfere with long‐term course of gastritis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号