首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   498篇
  免费   39篇
  537篇
  2023年   6篇
  2022年   12篇
  2021年   27篇
  2020年   11篇
  2019年   17篇
  2018年   15篇
  2017年   15篇
  2016年   23篇
  2015年   33篇
  2014年   38篇
  2013年   46篇
  2012年   38篇
  2011年   33篇
  2010年   19篇
  2009年   11篇
  2008年   18篇
  2007年   34篇
  2006年   24篇
  2005年   18篇
  2004年   15篇
  2003年   11篇
  2002年   10篇
  2001年   9篇
  2000年   10篇
  1999年   10篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1987年   5篇
  1985年   1篇
  1983年   1篇
  1980年   2篇
  1968年   1篇
  1966年   1篇
  1964年   2篇
  1956年   1篇
排序方式: 共有537条查询结果,搜索用时 0 毫秒
111.
IL-12 and IL-12 antagonist administration to nonobese diabetic (NOD) mice accelerates and prevents insulin-dependent diabetes mellitus (IDDM), respectively. To further define the role of endogenous IL-12 in the development of diabetogenic Th1 cells, IL-12-deficient NOD mice were generated and analyzed. Th1 responses to exogenous Ags were reduced by approximately 80% in draining lymph nodes of these mice, and addition of IL-12, but not IL-18, restored Th1 development in vitro, indicating a nonredundant role of IL-12. Moreover, spontaneous Th1 responses to a self Ag, the tyrosine phosphatase-like IA-2, were undetectable in lymphoid organs from IL-12-deficient, in contrast to wild-type, NOD mice. Nevertheless, wild-type and IL-12-deficient NOD mice developed similar insulitis and IDDM. Both in wild-type and IL-12-deficient NOD mice, approximately 20% of pancreas-infiltrating CD4+ T cells produced IFN-gamma, whereas very few produced IL-10 or IL-4, indicating that IDDM was associated with a type 1 T cell infiltrate in the target organ. T cell recruitment in the pancreas seemed favored in IL-12-deficient NOD mice, as revealed by increased P-selectin ligand expression on pancreas-infiltrating T cells, and this could, at least in part, compensate for the defective Th1 cell pool recruitable from peripheral lymphoid organs. Residual Th1 cells could also accumulate in the pancreas of IL-12-deficient NOD mice because Th2 cells were not induced, in contrast to wild-type NOD mice treated with an IL-12 antagonist. Thus, a regulatory pathway seems necessary to counteract the pathogenic Th1 cells that develop in the absence of IL-12 in a spontaneous chronic progressive autoimmune disease under polygenic control, such as IDDM.  相似文献   
112.
113.
Skeletal muscle (SkM) atrophy is caused by several and heterogeneous conditions, such as cancer, neuromuscular disorders and aging. In most types of SkM atrophy overall rates of protein synthesis are suppressed, protein degradation is consistently elevated and atrogenes, such as the ubiquitin ligase Atrogin-1/MAFbx, are up-regulated. The molecular regulators of SkM waste are multiple and only in part known.Sphingolipids represent a class of bioactive molecules capable of modulating the destiny of many cell types, including SkM cells. In particular, we and others have shown that sphingosine 1phosphate (S1P), formed by sphingosine kinase (SphK), is able to act as trophic and morphogenic factor in myoblasts.Here, we report the first evidence that the atrophic phenotype observed in both muscle obtained from mice bearing the C26 adenocarcinoma and C2C12 myotubes treated with dexamethasone was characterized by reduced levels of active phospho-SphK1. The importance of SphK1 activity is also confirmed by the specific pharmacological inhibition of SphK1 able to increase Atrogin-1/MAFbx expression and reduce myotube size and myonuclei number. Furthermore, we found that SkM atrophy was accomplished by significant increase of S1P transporter Spns2 and in changes in the pattern of S1P receptor (S1PRs) subtype expression paralleled by increased Atrogin-1/MAFbx expression, suggesting a role for the released S1P and of specific S1PR-mediated signaling pathways in the control of the ubiquitin ligase. Altogether, these findings provide the first evidence that SphK1/released S1P/S1PR axis acts as a molecular regulator of SkM atrophy, thereby representing a new possible target for therapy in many patho-physiological conditions.  相似文献   
114.
We investigated the expression and localization of B1 receptor in tissues of rats submitted to a renin-dependent model of hypertension (2K-1C), and analyzed the influence of endogenous Ang II in modulating the in vivo expression of these receptors. B1 mRNA levels in the heart, kidney and thoracic aorta were quantified by real time PCR, B1 receptor protein expression was assessed by immunohistochemistry, plasma Ang II levels were analyzed by radioimmunoassay and the effects of AT1 receptor blockade were determined after losartan treatment. 2K-1C rats presented a marked increase in Ang II levels when compared to sham-operated rats. In parallel, cardiac- (but not renal and aortic) B1 mRNA levels were 15-fold higher in 2K-1C than in sham rats. In 2K-1C, B1 expression was detected in the endothelium of small cardiac arteries and in cardiomyocytes. Losartan completely reverted the increased B1 mRNA levels and significantly decreased the protein expression observed in 2K-1C rats, despite reducing, but not normalizing blood pressure. We conclude that in the 2K-1C rat, induction of cardiac B1 receptor might be tightly linked to AT1 receptor activation. These data suggest the existence of a new site of interaction between kinins and angiotensins, and might provide important contributions for a better understanding of the pathophysiology of hypertension.  相似文献   
115.
116.
Formylated peptides are chemotactic agents generated by pathogens. The most relevant peptide is fMLF (formyl-Met-Leu-Phe) which participates in several immune functions, such as chemotaxis, phagocytosis, cytokine release and generation of reactive oxygen species. In macrophages fMLF-dependent responses are dependent on both, an increase in intracellular calcium concentration and on a hyperpolarization of the membrane potential. However, the molecular entity underlying this hyperpolarization remains unknown and it is not clear whether changes in membrane potential are linked to the increase in intracellular Ca2+. In this study, differentiated U937 cells, as a macrophage-like cell model, was used to characterize the fMLF response using electrophysiological and Ca2+ imaging techniques. We demonstrate by means of pharmacological and molecular biology tools that fMLF induces a Ca2+-dependent hyperpolarization via activation of the K+ channel KCa3.1 and thus, enhancing fMLF-induced intracellular Ca2+ increase through an amplification of the driving force for Ca2+ entry. Consequently, enhanced Ca2+ influx would in turn lengthen the hyperpolarization, operating as a positive feedback mechanism for fMLF-induced Ca2+ signaling.  相似文献   
117.
Calcium (Ca2+) is widely recognized as a key second messenger in mediating various plant adaptive responses. Here we show that calcineurin B-like interacting protein kinase CIPK9 along with its interacting partner VDAC3 identified in the present study are involved in mediating plant responses to methyl viologen (MV). CIPK9 physically interacts with and phosphorylates VDAC3. Co-localization, co-immunoprecipitation, and fluorescence resonance energy transfer experiments proved their physical interaction in planta. Both cipk9 and vdac3 mutants exhibited a tolerant phenotype against MV-induced oxidative stress, which coincided with the lower-level accumulation of reactive oxygen species in their roots. In addition, the analysis of cipk9vdac3 double mutant and VDAC3 overexpressing plants revealed that CIPK9 and VDAC3 were involved in the same pathway for inducing MV-dependent oxidative stress. The response to MV was suppressed by the addition of lanthanum chloride, a non-specific Ca2+ channel blocker indicating the role of Ca2+ in this pathway. Our study suggest that CIPK9-VDAC3 module may act as a key component in mediating oxidative stress responses in Arabidopsis.  相似文献   
118.
Arcesi L  La Penna G  Perico A 《Biopolymers》2007,86(2):127-135
Histonelike proteins in prokaryotes and histone octamers in eukaryotes carry large positive charges, which are responsible of strong electrostatic interactions with DNA. As a result, DNA wraps around proteins and genetic information is condensed. We describe a generalized model of these electrostatic interactions mediated by salt that explains the wrapping of DNA around the nucleosome octamer, around remodeling factors in eukaryotes and around histonelike proteins in prokaryotes. It comes out that small changes in protein dimension and charge produce large effects in the supramolecular DNA-protein architecture.  相似文献   
119.
Metastasis accounts for more than 90% of cancer deaths. Cells from primary solid tumors may invade adjacent tissues and migrate to distant sites where they establish new colonies. The tumor microenvironment is now recognized as an important participant in the signaling that induces cancer cell migration. An essential process for metastasis is extracellular matrix (ECM) degradation by metalloproteases (MMPs), which allows tumor cells to invade local tissues and to reach blood vessels. The members of this protein family include gelatinase A, or MMP-2, which is responsible for the degradation of type IV collagen, the most abundant component of the basal membrane, that separates epithelial cells in the stroma. It is known that fibronectin is capable of promoting the expression of MMP-2 in MCF7 breast cancer cells in culture. In addition, it was already shown that the MMP2 gene expression is regulated by epigenetic mechanisms. In this work, we showed that fibronectin was able to induce MMP2 expression by 30% decrease in its promoter methylation. In addition, a histone marker for an open chromatin conformation was significantly increased. These results indicate a new role for fibronectin in the communication between cancer cells and the ECM, promoting epigenetic modifications.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号