首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5494篇
  免费   438篇
  国内免费   1篇
  5933篇
  2023年   31篇
  2022年   68篇
  2021年   139篇
  2020年   81篇
  2019年   97篇
  2018年   144篇
  2017年   110篇
  2016年   194篇
  2015年   270篇
  2014年   285篇
  2013年   399篇
  2012年   439篇
  2011年   491篇
  2010年   300篇
  2009年   264篇
  2008年   307篇
  2007年   354篇
  2006年   301篇
  2005年   265篇
  2004年   269篇
  2003年   247篇
  2002年   204篇
  2001年   47篇
  2000年   42篇
  1999年   52篇
  1998年   58篇
  1997年   40篇
  1996年   43篇
  1995年   35篇
  1994年   26篇
  1993年   22篇
  1992年   28篇
  1991年   28篇
  1990年   31篇
  1989年   21篇
  1988年   17篇
  1987年   10篇
  1986年   7篇
  1985年   9篇
  1984年   8篇
  1983年   11篇
  1982年   9篇
  1981年   13篇
  1979年   6篇
  1978年   10篇
  1974年   13篇
  1973年   7篇
  1972年   8篇
  1971年   8篇
  1969年   5篇
排序方式: 共有5933条查询结果,搜索用时 15 毫秒
51.
Using morphological and molecular data, the new species Sistotremastrum guttuliferum is described from specimens collected in the Azores archipelago, Madeira and Canary Islands. Morphologically, this new species differs from S. niveocremeum and S. suecicum by the small oil drops in the cytoplasm of subicular hyphae and the spore size. An updated key of Sistotremastrum species is provided.  相似文献   
52.
Antagonistic interactions are likely important driving forces of the evolutionary process underlying bacterial genome complexity and diversity. We hypothesized that the ability of evolved bacteria to escape specific components of host innate immunity, such as phagocytosis and killing by macrophages (MΦ), is a critical trait relevant in the acquisition of bacterial virulence. Here, we used a combination of experimental evolution, phenotypic characterization, genome sequencing and mathematical modeling to address how fast, and through how many adaptive steps, a commensal Escherichia coli (E. coli) acquire this virulence trait. We show that when maintained in vitro under the selective pressure of host MΦ commensal E. coli can evolve, in less than 500 generations, virulent clones that escape phagocytosis and MΦ killing in vitro, while increasing their pathogenicity in vivo, as assessed in mice. This pathoadaptive process is driven by a mechanism involving the insertion of a single transposable element into the promoter region of the E. coli yrfF gene. Moreover, transposition of the IS186 element into the promoter of Lon gene, encoding an ATP-dependent serine protease, is likely to accelerate this pathoadaptive process. Competition between clones carrying distinct beneficial mutations dominates the dynamics of the pathoadaptive process, as suggested from a mathematical model, which reproduces the observed experimental dynamics of E. coli evolution towards virulence. In conclusion, we reveal a molecular mechanism explaining how a specific component of host innate immunity can modulate microbial evolution towards pathogenicity.  相似文献   
53.
During meiosis, accurate chromosome segregation relies on the proper interaction between homologous chromosomes, including synapsis and recombination. The meiotic recombination checkpoint is a quality control mechanism that monitors those crucial events. In response to defects in synapsis and/or recombination, this checkpoint blocks or delays progression of meiosis, preventing the formation of aberrant gametes. Meiotic recombination occurs in the context of chromatin and histone modifications, which play crucial roles in the maintenance of genomic integrity. Here, we unveil the role of Dot1-dependent histone H3 methylation at lysine 79 (H3K79me) in this meiotic surveillance mechanism. We demonstrate that the meiotic checkpoint function of Dot1 relies on H3K79me because, like the dot1 deletion, H3-K79A or H3-K79R mutations suppress the checkpoint-imposed meiotic delay of a synapsis-defective zip1 mutant. Moreover, by genetically manipulating Dot1 catalytic activity, we find that the status of H3K79me modulates the meiotic checkpoint response. We also define the phosphorylation events involving activation of the meiotic checkpoint effector Mek1 kinase. Dot1 is required for Mek1 autophosphorylation, but not for its Mec1/Tel1-dependent phosphorylation. Dot1-dependent H3K79me also promotes Hop1 activation and its proper distribution along zip1 meiotic chromosomes, at least in part, by regulating Pch2 localization. Furthermore, HOP1 overexpression bypasses the Dot1 requirement for checkpoint activation. We propose that chromatin remodeling resulting from unrepaired meiotic DSBs and/or faulty interhomolog interactions allows Dot1-mediated H3K79-me to exclude Pch2 from the chromosomes, thus driving localization of Hop1 along chromosome axes and enabling Mek1 full activation to trigger downstream responses, such as meiotic arrest.  相似文献   
54.
55.
Considering IPPC climate change scenarios, it is pertinent to predict situations where coastal ecosystems already impacted with chemical contamination became exposed to an additional stressor under a future scenario of seawater intrusion. Accordingly, the present study aimed at evaluating if a negative association between tolerance to a metal and to saltwater exists among genotypes of a freshwater organism. For this, five clonal lineages of the cladoceran Daphnia longispina O.F. Müller, exhibiting a differential tolerance to lethal levels of copper, were selected. Each clonal lineage was exposed to lethal and sublethal concentrations of sodium chloride (assumed as a protective surrogate to evaluate the toxicity of increased salinity to freshwater organisms). Mortality, time to release the first brood and total number of neonates per female were monitored and the somatic growth rate and intrinsic rate of natural increase were computed for each clonal lineage. Data here obtained were compared with their lethal responses to copper and significant negative correlations were found. These results suggest that genetically eroded populations of D. longispina, due to copper or salinity, may be particularly susceptible to a later exposure to the other contaminant supporting the multiple stressors differential tolerance.  相似文献   
56.
TGF-β family members play a relevant role in tumorigenic processes, including hepatocellular carcinoma (HCC), but a specific implication of the Bone Morphogenetic Protein (BMP) subfamily is still unknown. Although originally isolated from fetal liver, little is known about BMP9, a BMP family member, and its role in liver physiology and pathology. Our results show that BMP9 promotes growth in HCC cells, but not in immortalized human hepatocytes. In the liver cancer cell line HepG2, BMP9 triggers Smad1,5,8 phosphorylation and inhibitor of DNA binding 1 (Id1) expression up- regulation. Importantly, by using chemical inhibitors, ligand trap and gene silencing approaches we demonstrate that HepG2 cells autocrinely produce BMP9 that supports their proliferation and anchorage independent growth. Additionally, our data reveal that in HepG2 cells BMP9 triggers cell cycle progression, and strikingly, completely abolishes the increase in the percentage of apoptotic cells induced by long-term incubation in low serum. Collectively, our data unveil a dual role for BMP9, both promoting a proliferative response and exerting a remarkable anti-apoptotic function in HepG2 cells, which result in a robust BMP9 effect on liver cancer cell growth. Finally, we show that BMP9 expression is increased in 40% of human HCC tissues compared with normal human liver as revealed by immunohistochemistry analysis, suggesting that BMP9 signaling may be relevant during hepatocarcinogenesis in vivo. Our findings provide new clues for a better understanding of BMPs contribution, and in particular BMP9, in HCC pathogenesis that may result in the development of effective and targeted therapeutic interventions.  相似文献   
57.
Bacteria associated with the nematode Bursaphelenchus xylophilus, a pathogen of trees and the causal agent of pine wilt disease (PWD) may play a role in the disease. In order to evaluate their role (positive or negative to the tree), strains isolated from the track of nematodes from infected Pinus pinaster trees were screened, in vitro, for their nematicidal potential. The bacterial products, from strains more active in killing nematodes, were screened in order to identify and characterize the nematicidal agent. Forty-seven strains were tested and, of these, 21 strains showed capacity to produce extracellular products with nematicidal activity. All Burkholderia strains were non-toxic. In contrast, all Serratia strains except one exhibited high toxicity. Nematodes incubated with Serratia strains showed, by SEM observation, deposits of bacteria on the nematode cuticle. The most nematicidal strain, Serratia sp. A88copa13, produced proteases in the supernatant. The use of selective inhibitors revealed that a serine protease with 70 kDa was majorly responsible for the toxicity of the supernatant. This extracellular serine protease is different phylogenetically, in size and biochemically from previously described proteases. Nematicidal assays revealed differences in nematicidal activity of the proteases to different species of Bursaphelenchus, suggesting its usefulness in a primary screen of the nematodes. This study offers the basis for further investigation of PWD and brings new insights on the role bacteria play in the defense of pine trees against B. xylophilus. Understanding all the factors involved is important in order to develop strategies to control B. xylophilus dispersion.  相似文献   
58.
Over the past decade, zebrafish (Danio rerio) have emerged as an attractive model for in vivo drug discovery. In this study, we explore the suitability of zebrafish larvae to rapidly evaluate the anti-inflammatory activity of natural products (NPs) and medicinal plants used in traditional medicine for the treatment of inflammatory disorders. First, we optimized a zebrafish assay for leukocyte migration. Inflammation was induced in four days post-fertilization (dpf) zebrafish larvae by tail transection and co-incubation with bacterial lipopolysaccharides (LPS), resulting in a robust recruitment of leukocytes to the zone of injury. Migrating zebrafish leukocytes were detected in situ by myeloperoxidase (MPO) staining, and anti-inflammatory activity was semi-quantitatively scored using a standardized scale of relative leukocyte migration (RLM). Pharmacological validation of this optimized assay was performed with a panel of anti-inflammatory drugs, demonstrating a concentration-responsive inhibition of leukocyte migration for both steroidal and non-steroidal anti-inflammatory drugs (SAIDs and NSAIDs). Subsequently, we evaluated the bioactivity of structurally diverse NPs with well-documented anti-inflammatory properties. Finally, we further used this zebrafish-based assay to quantify the anti-inflammatory activity in the aqueous and methanolic extracts of several medicinal plants. Our results indicate the suitability of this LPS-enhanced leukocyte migration assay in zebrafish larvae as a front-line screening platform in NP discovery, including for the bioassay-guided isolation of anti-inflammatory secondary metabolites from complex NP extracts.  相似文献   
59.
Increasing evidences highlight the importance of DEAD-box RNA helicases in plant development and stress responses. In a previous study, we characterized the tomato res mutant (restored cell structure by salinity), showing chlorosis and development alterations that reverted under salt-stress conditions. Map-based cloning demonstrates that RES gene encodes SlDEAD39, a chloroplast-targeted DEAD-box RNA helicase. Constitutive expression of SlDEAD39 complements the res mutation, while the silencing lines had a similar phenotype than res mutant, which is also reverted under salinity. Functional analysis of res mutant proved SlDEAD39 is involved in the in vivo processing of the chloroplast, 23S rRNA, at the hidden break-B site, a feature also supported by in vitro binding experiments of the protein. In addition, our results show that other genes coding for chloroplast-targeted DEAD-box proteins are induced by salt-stress, which might explain the rescue of the res mutant phenotype. Interestingly, salinity restored the phenotype of res adult plants by increasing their sugar content and fruit yield. Together, these results propose an unprecedented role of a DEAD-box RNA helicase in regulating plant development and stress response through the proper ribosome and chloroplast functioning, which, in turn, represents a potential target to improve salt tolerance in tomato crops.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号