首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5257篇
  免费   423篇
  国内免费   1篇
  5681篇
  2024年   5篇
  2023年   31篇
  2022年   67篇
  2021年   138篇
  2020年   77篇
  2019年   96篇
  2018年   142篇
  2017年   107篇
  2016年   189篇
  2015年   266篇
  2014年   278篇
  2013年   389篇
  2012年   433篇
  2011年   479篇
  2010年   292篇
  2009年   256篇
  2008年   303篇
  2007年   350篇
  2006年   292篇
  2005年   259篇
  2004年   262篇
  2003年   244篇
  2002年   196篇
  2001年   45篇
  2000年   36篇
  1999年   43篇
  1998年   53篇
  1997年   40篇
  1996年   41篇
  1995年   31篇
  1994年   23篇
  1993年   18篇
  1992年   21篇
  1991年   19篇
  1990年   21篇
  1989年   14篇
  1988年   12篇
  1987年   6篇
  1985年   7篇
  1984年   7篇
  1983年   8篇
  1982年   8篇
  1981年   9篇
  1980年   4篇
  1979年   4篇
  1978年   6篇
  1976年   5篇
  1973年   5篇
  1971年   6篇
  1935年   4篇
排序方式: 共有5681条查询结果,搜索用时 0 毫秒
21.
Proton-gated TASK-3 K+ channel belongs to the K2P family of proteins that underlie the K+ leak setting the membrane potential in all cells. TASK-3 is under cooperative gating control by extracellular [H+]. Use of recently solved K2P structures allows us to explore the molecular mechanism of TASK-3 cooperative pH gating. Tunnel-like side portals define an extracellular ion pathway to the selectivity filter. We use a combination of molecular modeling and functional assays to show that pH-sensing histidine residues and K+ ions mutually interact electrostatically in the confines of the extracellular ion pathway. K+ ions modulate the pKa of sensing histidine side chains whose charge states in turn determine the open/closed transition of the channel pore. Cooperativity, and therefore steep dependence of TASK-3 K+ channel activity on extracellular pH, is dependent on an effect of the permeant ion on the channel pHo sensors.  相似文献   
22.
S100A6 is a small EF-hand calcium- and zinc-binding protein involved in the regulation of cell proliferation and cytoskeletal dynamics. It is overexpressed in neurodegenerative disorders and a proposed marker for Amyotrophic Lateral Sclerosis (ALS). Following recent reports of amyloid formation by S100 proteins, we investigated the aggregation properties of S100A6. Computational analysis using aggregation predictors Waltz and Zyggregator revealed increased propensity within S100A6 helices HI and HIV. Subsequent analysis of Thioflavin-T binding kinetics under acidic conditions elicited a very fast process with no lag phase and extensive formation of aggregates and stacked fibrils as observed by electron microscopy. Ca2+ exerted an inhibitory effect on the aggregation kinetics, which could be reverted upon chelation. An FT-IR investigation of the early conformational changes occurring under these conditions showed that Ca2+ promotes anti-parallel β-sheet conformations that repress fibrillation. At pH 7, Ca2+ rendered the fibril formation kinetics slower: time-resolved imaging showed that fibril formation is highly suppressed, with aggregates forming instead. In the absence of metals an extensive network of fibrils is formed. S100A6 oligomers, but not fibrils, were found to be cytotoxic, decreasing cell viability by up to 40%. This effect was not observed when the aggregates were formed in the presence of Ca2+. Interestingly, native S1006 seeds SOD1 aggregation, shortening its nucleation process. This suggests a cross-talk between these two proteins involved in ALS. Overall, these results put forward novel roles for S100 proteins, whose metal-modulated aggregation propensity may be a key aspect in their physiology and function.  相似文献   
23.
Bacterial transformation, a common mechanism of horizontal gene transfer, can speed up adaptive evolution. How its costs and benefits depend on the growth environment is poorly understood. Here, we characterize the distributions of fitness effects (DFE) of transformation in different conditions and test whether they predict in which condition transformation is beneficial. To determine the DFEs, we generate hybrid libraries between the recipient Bacillus subtilis and different donor species and measure the selection coefficient of each hybrid strain. In complex medium, the donor Bacillus vallismortis confers larger fitness effects than the more closely related donor Bacillus spizizenii. For both donors, the DFEs show strong effect beneficial transfers, indicating potential for fast adaptive evolution. While some transfers of B. vallismortis DNA show pleiotropic effects, various transfers are beneficial only under a single growth condition, indicating that the recipient can benefit from a variety of donor genes to adapt to varying growth conditions. We scrutinize the predictive value of the DFEs by laboratory evolution under different growth conditions and show that the DFEs correctly predict the condition at which transformation confers a benefit. We conclude that transformation has a strong potential for speeding up adaptation to varying environments by profiting from a gene pool shared between closely related species.Subject terms: Molecular evolution, Bacterial genetics  相似文献   
24.
25.
Delany I  Spohn G  Rappuoli R  Scarlato V 《Gene》2002,283(1-2):63-69
The major chaperone genes of Helicobacter pylori are negatively regulated by HspR, a homologue of the repressor of the dnaK operon of Streptomyces coelicolor. Using an in vitro selection and amplification approach we identified two new chromosomal binding sites of the HspR protein. Both binding sites were characterized by footprinting analysis with purified HspR protein. Intriguingly, these HspR binding sites are located at the 3prime prime or minute ends of two genes coding for predicted proteins with functions unrelated to those of chaperones. This suggests that H. pylori HspR may regulate the expression of genes encoding proteins with diverse functions. Nucleotide sequence alignment of HspR-binding sites highlights conserved nucleotides extending outside the previously proposed consensus binding sequence with structural features predicting geometry of HspR binding as an oligomer.  相似文献   
26.
27.
Rapid identification of Populus L. species and hybrids can be achieved with relatively little effort through the use of primer extension-based single nucleotide polymorphism (SNP) genotyping assays. We present an optimized set of 36 SNP markers from 28 gene regions that diagnose eight poplar species (Populus angustifolia James, Populus balsamifera L., Populus deltoides Bartram, Populus fremontii Watson, Populus laurifolia Ledeb., Populus maximowiczii Henry, Populus nigra L., and Populus trichocarpa Torr. & Gray). A total of 700 DNA sequences from six Populus species (1–15 individuals per species) were used to construct the array. A set of flanking and probe oligonucleotides was developed and tested. The accuracy of the SNP assay was validated by genotyping 448 putatively “pure” individuals from 14 species of Populus. Overall, the SNP assay had a high success rate (97.6 %) and will prove useful for the identification of all Aigeiros Duby and Tacamahaca Spach. species and their early-generation hybrids within natural populations and breeding programs. Null alleles and intraspecific polymorphisms were detected for a few locus/species combinations in the Aigeiros and Tacamahaca sections. When we attempted to genotype aspens of the section Populus (Populus alba L., Populus grandidentata Michx., Populus tremula L., and Populus tremuloides Michx.), the success rate of the SNP array decreased by 13 %, demonstrating moderate cross-sectional transferability.  相似文献   
28.
The protozoan pathogen Trypanosoma brucei is transmitted between mammals by tsetse flies. The first compartment colonised by trypanosomes after a blood meal is the fly midgut lumen. Trypanosomes present in the lumen—designated as early procyclic forms—express the stage-specific surface glycoproteins EP and GPEET procyclin. When the trypanosomes establish a mature infection and colonise the ectoperitrophic space, GPEET is down-regulated, and EP becomes the major surface protein of late procyclic forms. A few years ago, it was discovered that procyclic form trypanosomes exhibit social motility (SoMo) when inoculated on a semi-solid surface. We demonstrate that SoMo is a feature of early procyclic forms, and that late procyclic forms are invariably SoMo-negative. In addition, we show that, apart from GPEET, other markers are differentially expressed in these two life-cycle stages, both in culture and in tsetse flies, indicating that they have different biological properties and should be considered distinct stages of the life cycle. Differentially expressed genes include two closely related adenylate cyclases, both hexokinases and calflagins. These findings link the phenomenon of SoMo in vitro to the parasite forms found during the first 4–7 days of a midgut infection. We postulate that ordered group movement on plates reflects the migration of parasites from the midgut lumen into the ectoperitrophic space within the tsetse fly. Moreover, the process can be uncoupled from colonisation of the salivary glands. Although they are the major surface proteins of procyclic forms, EP and GPEET are not essential for SoMo, nor, as shown previously, are they required for near normal colonisation of the fly midgut.  相似文献   
29.
The pgmG gene of Sphingomonas paucimobilis ATCC 31461, the industrial gellan gum-producing strain, was cloned and sequenced. It encodes a 50,059-Da polypeptide that has phosphoglucomutase (PGM) and phosphomannomutase (PMM) activities and is 37 to 59% identical to other bifunctional proteins with PGM and PMM activities from gram-negative species, including Pseudomonas aeruginosa AlgC. Purified PgmG protein showed a marked preference for glucose-1-phosphate (G1P); the catalytic efficiency was about 50-fold higher for G1P than it was for mannose-1-phosphate (M1P). The estimated apparent Km values for G1P and M1P were high, 0.33 and 1.27 mM, respectively. The pgmG gene allowed the recovery of alginate biosynthetic ability in a P. aeruginosa mutant with a defective algC gene. This result indicates that PgmG protein can convert mannose-6-phosphate into M1P in the initial steps of alginate biosynthesis and, together with other results, suggests that PgmG may convert glucose-6-phosphate into G1P in the gellan pathway.  相似文献   
30.
Age-related macular degeneration is the leading cause of legal blindness in people over 50 in developed countries. It is a multifactorial disease resulting from the interaction of genetic and environmental factors, and the age is the only worldwide admitted risk factor. The socioeconomic impact of the disease reaches enormous proportions, if we take into account the high cost of the available antiangiogenic therapy, the strict schedule of medical visits that it requires, and the impairment that it gives rise to. The response to treatment and the visual outcomes improve with early management of the retinal lesions, thus the early diagnosis of the disease in its initial phases, based on self-control with an Amsler grid and with regular ophthalmologic assessments, is essential.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号