首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6215篇
  免费   609篇
  国内免费   1篇
  6825篇
  2023年   34篇
  2022年   78篇
  2021年   153篇
  2020年   91篇
  2019年   113篇
  2018年   160篇
  2017年   123篇
  2016年   216篇
  2015年   306篇
  2014年   320篇
  2013年   438篇
  2012年   487篇
  2011年   536篇
  2010年   323篇
  2009年   281篇
  2008年   348篇
  2007年   380篇
  2006年   333篇
  2005年   291篇
  2004年   297篇
  2003年   279篇
  2002年   233篇
  2001年   70篇
  2000年   54篇
  1999年   69篇
  1998年   65篇
  1997年   53篇
  1996年   64篇
  1995年   47篇
  1994年   34篇
  1993年   33篇
  1992年   43篇
  1991年   38篇
  1990年   45篇
  1989年   39篇
  1988年   29篇
  1987年   20篇
  1986年   15篇
  1985年   25篇
  1984年   24篇
  1983年   17篇
  1982年   20篇
  1981年   14篇
  1980年   9篇
  1978年   11篇
  1976年   11篇
  1974年   9篇
  1973年   13篇
  1972年   9篇
  1971年   12篇
排序方式: 共有6825条查询结果,搜索用时 12 毫秒
51.
52.
53.
54.
55.
56.
The length of the Yersinia injectisome needle is determined by the protein YscP, which could act as a molecular ruler. The analysis of the correlation between the size of YscP and the needle length in seven wild-type strains of Yersinia enterocolitica reinforced this hypothesis but hinted that the secondary structure of YscP might influence needle length. Hence, 11 variants of YscP515 were generated by multiple Pro or Gly substitutions. The needle length changed in inverse function of the helical content, indicating that not only the number of residues but also their structure controls length. Taking the secondary motifs into account, Pro/Gly-variants were subjected to in silico modelling to simulate the extension of YscP upon needle growth. The calculated lengths when the helical content is preserved correlated strikingly with the measured needle length, with a constant difference of ∼29 nm, which corresponds approximately to the size of the basal body. These data support the ruler model and show that the functional ruler has a helical structure.  相似文献   
57.
Understanding the drivers of biodiversity is important for forecasting changes in the distribution of life on earth. However, most studies of biodiversity are limited by uneven sampling effort, with some regions or taxa better sampled than others. Numerous methods have been developed to account for differences in sampling effort, but most methods were developed for systematic surveys in which all study units are sampled using the same design and assemblages are sampled randomly. Databases compiled from multiple sources, such as from the literature, often violate these assumptions because they are composed of studies that vary widely in their goals and methods. Here, we compared the performance of several popular methods for estimating parasite diversity based on a large and widely used parasite database, the Global Mammal Parasite Database (GMPD). We created artificial datasets of host–parasite interactions based on the structure of the GMPD, then used these datasets to evaluate which methods best control for differential sampling effort. We evaluated the precision and bias of seven methods, including species accumulation and nonparametric diversity estimators, compared to analyzing the raw data without controlling for sampling variation. We find that nonparametric estimators, and particularly the Chao2 and second-order jackknife estimators, perform better than other methods. However, these estimators still perform poorly relative to systematic sampling, and effect sizes should be interpreted with caution because they tend to be lower than actual effect sizes. Overall, these estimators are more effective in comparative studies than for producing true estimates of diversity. We make recommendations for future sampling strategies and statistical methods that would improve estimates of global parasite diversity.  相似文献   
58.
Ovule primordia formation is a complex developmental process with a strong impact on the production of seeds. In Arabidopsis this process is controlled by a gene network, including components of the signalling pathways of auxin, brassinosteroids (BRs) and cytokinins. Recently, we have shown that gibberellins (GAs) also play an important role in ovule primordia initiation, inhibiting ovule formation in both Arabidopsis and tomato. Here we reveal that BRs also participate in the control of ovule initiation in tomato, by promoting an increase on ovule primordia formation. Moreover, molecular and genetic analyses of the co‐regulation by GAs and BRs of the control of ovule initiation indicate that two different mechanisms occur in tomato and Arabidopsis. In tomato, GAs act downstream of BRs. BRs regulate ovule number through the downregulation of GA biosynthesis, which provokes stabilization of DELLA proteins that will finally promote ovule primordia initiation. In contrast, in Arabidopsis both GAs and BRs regulate ovule number independently of the activity levels of the other hormone. Taken together, our data strongly suggest that different molecular mechanisms could operate in different plant species to regulate identical developmental processes even, as for ovule primordia initiation, if the same set of hormones trigger similar responses, adding a new level of complexity.  相似文献   
59.

The Niagara River, which connects two Great Lakes (Erie and Ontario) and forms a border between Canada and the United States, has experienced decades of abiotic and biotic disturbance as well as long-term restoration efforts. Given the iconic riverscape and importance as a binational fisheries resource, a biodiversity assessment of the mainstem Niagara River fish assemblage is overdue. Here, fish assemblage and habitat data from a standardized boat electrofishing program of the Niagara River were combined with species trait data related to substrate associations, diet preferences, reproductive strategies, and body size to quantify biodiversity patterns among river sections (sites above and below Niagara Falls), seasons (spring, summer, fall), and years (2015–2017). Sixty-five species were captured representing a variety of trait combinations. Significant differences in functional dispersion and divergence (i.e., functional diversity) were observed between river sections, seasons, and (or) years. The fish community captured in the lower river in spring 2015 had both the highest average functional dispersion (2.08?±?0.32 SD) and divergence (0.88?±?0.04 SD) compared to the other seasonal sampling efforts, but relatively few fishes were captured (n?=?686). Although non-native fishes represented a small portion of the catch over the 3 years (8.6% of catch), the seasonal presence (spring and fall) of mostly introduced large-bodied salmonids expanded functional trait space in the lower river during these periods. The importance of rare species on functional diversity metrics suggests further insight on local species detection probabilities is needed to understand if differences in functional diversity reflect ecological patterns or are driven by sampling design.

  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号