首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   865篇
  免费   112篇
  977篇
  2022年   7篇
  2021年   24篇
  2020年   14篇
  2019年   11篇
  2018年   15篇
  2017年   12篇
  2016年   32篇
  2015年   25篇
  2014年   35篇
  2013年   47篇
  2012年   72篇
  2011年   63篇
  2010年   31篇
  2009年   42篇
  2008年   52篇
  2007年   48篇
  2006年   41篇
  2005年   40篇
  2004年   28篇
  2003年   30篇
  2002年   34篇
  2001年   10篇
  2000年   9篇
  1999年   11篇
  1998年   10篇
  1996年   6篇
  1995年   8篇
  1993年   7篇
  1992年   8篇
  1991年   5篇
  1990年   13篇
  1989年   8篇
  1988年   5篇
  1987年   5篇
  1986年   14篇
  1985年   10篇
  1984年   7篇
  1983年   8篇
  1979年   10篇
  1978年   9篇
  1977年   9篇
  1975年   5篇
  1974年   13篇
  1973年   11篇
  1972年   9篇
  1971年   8篇
  1970年   9篇
  1968年   4篇
  1967年   4篇
  1966年   5篇
排序方式: 共有977条查询结果,搜索用时 15 毫秒
51.
Legionella pneumophila and Coxiella burnetii have been shown to utilize the icm/dot type IV secretion system for pathogenesis and recently a large number of icm/dot-translocated substrates were identified in L. pneumophila. Bioinformatic analysis has revealed that 13 of the genes encoding for L. pneumophila-translocated substrates and five of the C. burnetii icm/dot genes, contain a conserved regulatory element that resembles the target sequence of the PmrA response regulator. Experimental analysis which included the construction of a L. pneumophila pmrA deletion mutant, intracellular growth analysis, comparison of gene expression between L. pneumophila wild type and the pmrA mutant, construction of mutations in the PmrA conserved regulatory element, controlled expression studies as well as mobility shift assays, demonstrated the direct relation between the PmrA regulator and the expression of L. pneumophila icm/dot-translocated substrates and several C. burnetii icm/dot genes. Furthermore, genomic analysis identified 35 L. pneumophila and 68 C. burnetii unique genes that contain the PmrA regulatory element and few of these genes from L. pneumophila were found to be new icm/dot-translocated substrates. Our results establish the PmrA regulator as a fundamental regulator of the icm/dot type IV secretion system in these two bacteria.  相似文献   
52.
Demetallized concanavalin A is degraded rapidly at pH 7.0 and 8.2 by alpha-chymotrypsin, thermolysin or trypsin, yielding peptide fragments devoid of ability to bind to Sephadex G-75. Addition of Ni2+ and of Ca2+ confers on concanavalin A high resistance towards proteolytic attack so that even after long periods of exposure to the enzymes, almost all of the saccharide-binding capacity is preserved. Ni2+ alone protects strongly at pH 7.0 but not at pH 8.2. Apparently, both the transition metal ion and Ca2+ play an important role in stabilizing the native conformation of the protein molecule. Digestion of demetallized concanavalin A with alpha-chymotrypsin or thermolysin readily yields small peptide fragments (Mr less than 10 000), while trypsin yields as the major product(s) larger peptide(s) (Mr approximately 20 000) of appreciable resistance to further fragmentation.  相似文献   
53.
The observed and expected frequencies of occurrence of microsatellites in the yeast Saccharomyces cerevisiae were investigated. In all cases, the observed frequencies exceeded the expected ones. In contrast to predictions by Messier et al. (1996), there is no critical number of repeats beyond which the observed frequencies of microsatellites significantly exceed the frequencies expected in a random DNA sequence of the same size. Rather, the degree of deviation from expectation was found to be dependent on the length of the microsatellite. That is, a fourfold concatemeric repeat of 3 bp was found to deviate from expectation as much as threefold concatemeric repeat of 4 bp, unlike the deviation of a fourfold concatemeric repeat of 4 bp. These findings suggest that microsatellites evolve through strand-slippage events, rather than recombination events. This, in turn, suggests that the chances of erroneous hybridizations leading to strand-slippage are length dependent. Received: 1 June 1998 / Accepted: 16 September 1998  相似文献   
54.
Down syndrome (DS) is a human genetic disease caused by trisomy of chromosome 21 and characterized by early developmental brain abnormalities. Dysfunctional endosomal pathway in neurons is an early event of DS and Alzheimer's disease. Recently, we have demonstrated that exosome secretion is upregulated in human DS postmortem brains, in the brain of the trisomic mouse model Ts[Rb(12.1716)]2Cje (Ts2) and by DS fibroblasts as compared with disomic controls. High levels of the tetraspanin CD63, a regulator of exosome biogenesis, were observed in DS brains. Partially blocking exosome secretion by DS fibroblasts exacerbated a pre‐existing early endosomal pathology. We thus hypothesized that enhanced CD63 expression induces generation of intraluminal vesicles (ILVs) in late endosomes/multivesicular bodies (MVBs), increasing exosome release as an endogenous mechanism to mitigate endosomal abnormalities in DS. Herein, we show a high‐resolution electron microscopy analysis of MVBs in neurons of the frontal cortex of 12‐month‐old Ts2 mice and littermate diploid controls. Our quantitative analysis revealed that Ts2 MVBs are larger, more abundant, and contain a higher number of ILVs per neuron compared to controls. These findings were further corroborated biochemically by Western blot analysis of purified endosomal fractions showing higher levels of ILVs proteins in the same fractions containing endosomal markers in the brain of Ts2 mice compared to controls. These data suggest that upregulation of ILVs production may be a key homeostatic mechanism to alleviate endosomal dysregulation via the endosomal–exosomal pathway.  相似文献   
55.

Background

The concept of a tree of life is prevalent in the evolutionary literature. It stems from attempting to obtain a grand unified natural system that reflects a recurrent process of species and lineage splittings for all forms of life. Traditionally, the discipline of systematics operates in a similar hierarchy of bifurcating (sometimes multifurcating) categories. The assumption of a universal tree of life hinges upon the process of evolution being tree-like throughout all forms of life and all of biological time. In multicellular eukaryotes, the molecular mechanisms and species-level population genetics of variation do indeed mainly cause a tree-like structure over time. In prokaryotes, they do not. Prokaryotic evolution and the tree of life are two different things, and we need to treat them as such, rather than extrapolating from macroscopic life to prokaryotes. In the following we will consider this circumstance from philosophical, scientific, and epistemological perspectives, surmising that phylogeny opted for a single model as a holdover from the Modern Synthesis of evolution.

Results

It was far easier to envision and defend the concept of a universal tree of life before we had data from genomes. But the belief that prokaryotes are related by such a tree has now become stronger than the data to support it. The monistic concept of a single universal tree of life appears, in the face of genome data, increasingly obsolete. This traditional model to describe evolution is no longer the most scientifically productive position to hold, because of the plurality of evolutionary patterns and mechanisms involved. Forcing a single bifurcating scheme onto prokaryotic evolution disregards the non-tree-like nature of natural variation among prokaryotes and accounts for only a minority of observations from genomes.

Conclusion

Prokaryotic evolution and the tree of life are two different things. Hence we will briefly set out alternative models to the tree of life to study their evolution. Ultimately, the plurality of evolutionary patterns and mechanisms involved, such as the discontinuity of the process of evolution across the prokaryote-eukaryote divide, summons forth a pluralistic approach to studying evolution.

Reviewers

This article was reviewed by Ford Doolittle, John Logsdon and Nicolas Galtier.  相似文献   
56.
The green fluorescent protein (GFP) is among the most commonly used expression markers in biology. GFP-tagged cells have played a particularly important role in studies of cell lineage. Sensitive detection of GFP is crucially important for such studies to be successful, and problems with detection may account for discrepancies in the literature regarding the possible fate choices of stem cells. Here we describe a very sensitive technique for visualization of GFP. Using it we can detect about 90% of cells of donor origin while we could only see about 50% of these cells when we employ the methods that are in general use in other laboratories. In addition, we provide evidence that some cells permanently silence GFP expression. In the case of the progeny of bone marrow stem cells, it appears that the more distantly related they are to their precursors, the more likely it is that they will turn off the lineage marker.  相似文献   
57.
58.
59.
D Lazard  N Tal  M Rubinstein  M Khen  D Lancet  K Zupko 《Biochemistry》1990,29(32):7433-7440
Two major transmembranal polypeptides of bovine olfactory epithelium were identified by SDS electrophoretic analysis of Triton X-114 solubilized membranes. Both polypeptides were present in large amounts in membranes of the olfactory epithelium but were barely detectable in membranes of the nasal respiratory epithelium. Both polypeptides are enriched in the deciliated epithelium as compared with isolated cilia. One of them is a glycoprotein with an apparent molecular mass of 56 kDa (gp56); the other is an unglycosylated protein with an apparent molecular mass of 52 kDa (p52). Sequence analysis of peptides obtained by CNBr cleavage of purified gp56 indicates that it is highly homologous to UDP-glucuronosyl transferase (UDPGT). Parallel analysis shows that p52 is highly homologous to cytochrome P-450 sequences of the IIA subfamily. This protein is assigned the name P-450olf2. Polyclonal antibodies were raised against synthetic peptides corresponding to gp56 and p52 peptide sequences. Immunoblots with these antibodies reveal the following properties of gp56 and p52: (1) they are enriched in the microsomal fraction of the bovine olfactory epithelium; (2) they are possibly specific to the olfactory epithelium, as we could not detect reactivity in microsomes derived from respiratory epithelium or lung, and only a very small amount of basal reactivity was seen with liver microsomes; (3) cross-reacting proteins exist in microsomes derived from the rat olfactory epithelium. These results are consistent with a mechanism whereby the microsomal enzymes are involved in odorant modification and clearance from the nasal tissue.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号