首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1577篇
  免费   109篇
  国内免费   1篇
  2023年   13篇
  2022年   34篇
  2021年   57篇
  2020年   25篇
  2019年   36篇
  2018年   32篇
  2017年   36篇
  2016年   36篇
  2015年   85篇
  2014年   75篇
  2013年   86篇
  2012年   136篇
  2011年   119篇
  2010年   90篇
  2009年   52篇
  2008年   83篇
  2007年   100篇
  2006年   71篇
  2005年   70篇
  2004年   56篇
  2003年   59篇
  2002年   61篇
  2001年   11篇
  2000年   18篇
  1999年   15篇
  1998年   12篇
  1997年   14篇
  1996年   7篇
  1995年   7篇
  1994年   5篇
  1993年   5篇
  1992年   8篇
  1991年   4篇
  1990年   6篇
  1989年   8篇
  1987年   7篇
  1986年   7篇
  1985年   5篇
  1984年   9篇
  1983年   12篇
  1982年   12篇
  1981年   13篇
  1979年   8篇
  1978年   4篇
  1976年   6篇
  1975年   4篇
  1974年   6篇
  1973年   8篇
  1967年   4篇
  1964年   3篇
排序方式: 共有1687条查询结果,搜索用时 31 毫秒
51.
Morales et al. test predictions of adaptive radiation theory and phenotypic convergence in Myotis bats using genomic target capture and a morphological dataset that represents 80% of the species described for this genus. The authors demonstrate that ecomorphological convergence has occurred multiple times throughout the history of Myotis, despite finding no diversification rate shifts associated with phenotypic adaptation. These patterns provide evidence that parallel adaptive radiations can be the result of nonadaptive lineage diversification followed by repetitive exploitation of ecomorphological solutions.  相似文献   
52.
The Agrobacterium tumefaciens VirB/VirD4 type IV secretion system is composed of a translocation channel and an extracellular T pilus. Bitopic VirB10, the VirB7 lipoprotein, and VirB9 interact to form a cell envelope-spanning structural scaffold termed the “core complex” that is required for the assembly of both structures. The related pKM101-encoded core complex is composed of 14 copies each of these VirB homologs, and the transmembrane (TM) α helices of VirB10-like TraF form a 55-Å-diameter ring at the inner membrane. Here, we report that the VirB10 TM helix possesses two types of putative dimerization motifs, a GxxxA (GA4) motif and two leucine (Leu1, Leu2) zippers. Mutations in the Leu1 motif disrupted T-pilus biogenesis, but these or other mutations in the GA4 or Leu2 motif did not abolish substrate transfer. Replacement of the VirB10 TM domain with a nondimerizing poly-Leu/Ala TM domain sequence also blocked pilus production but not substrate transfer or formation of immunoprecipitable complexes with the core subunits VirB7 and VirB9 and the substrate receptor VirD4. The VirB10 TM helix formed weak homodimers in Escherichia coli, as determined with the TOXCAT assay, whereas replacement of the VirB10 TM helix with the strongly dimerizing TM helix from glycophorin A blocked T-pilus biogenesis in A. tumefaciens. Our findings support a model in which VirB10''s TM helix contributes to the assembly or activity of the translocation channel as a weakly self-interacting membrane anchor but establishes a heteromeric TM-TM helix interaction via its Leu1 motif that is critical for T-pilus biogenesis.  相似文献   
53.
STIM1 and Orai1 represent the two molecular key components of the Ca2+ release-activated Ca2+ channels. Their activation involves STIM1 C terminus coupling to both the N terminus and the C terminus of Orai. Here we focused on the extended transmembrane Orai1 N-terminal (ETON, aa73–90) region, conserved among the Orai family forming an elongated helix of TM1 as recently shown by x-ray crystallography. To identify “hot spot” residues in the ETON binding interface for STIM1 interaction, numerous Orai1 constructs with N-terminal truncations or point mutations within the ETON region were generated. N-terminal truncations of the first four residues of the ETON region or beyond completely abolished STIM1-dependent Orai1 function. Loss of Orai1 function resulted from neither an impairment of plasma membrane targeting nor pore damage, but from a disruption of STIM1 interaction. In a complementary approach, we monitored STIM1-Orai interaction via Orai1 V102A by determining restored Ca2+ selectivity as a consequence of STIM1 coupling. Orai1 N-terminal truncations that led to a loss of function consistently failed to restore Ca2+ selectivity of Orai1 V102A in the presence of STIM1, demonstrating impairment of STIM1 binding. Hence, the major portion of the ETON region (aa76–90) is essential for STIM1 binding and Orai1 activation. Mutagenesis within the ETON region revealed several hydrophobic and basic hot spot residues that appear to control STIM1 coupling to Orai1 in a concerted manner. Moreover, we identified two basic residues, which protrude into the elongated pore to redound to Orai1 gating. We suggest that several hot spot residues in the ETON region contribute in aggregate to the binding of STIM1, which in turn is coupled to a conformational reorientation of the gate.  相似文献   
54.
With the success of protein kinase inhibitors as drugs to target cancer, there is a continued need for new kinase inhibitor scaffolds. We have investigated the synthesis and kinase inhibition of new heteroaryl-substituted diazaspirocyclic compounds that mimic ATP. Versatile syntheses of substituted diazaspirocycles through ring-closing metathesis were demonstrated. Diazaspirocycles directly linked to heteroaromatic hinge binder groups provided ligand efficient inhibitors of multiple kinases, suitable as starting points for further optimization. The binding modes of representative diazaspirocyclic motifs were confirmed by protein crystallography. Selectivity profiles were influenced by the hinge binder group and the interactions of basic nitrogen atoms in the scaffold with acidic side-chains of residues in the ATP pocket. The introduction of more complex substitution to the diazaspirocycles increased potency and varied the selectivity profiles of these initial hits through engagement of the P-loop and changes to the spirocycle conformation, demonstrating the potential of these core scaffolds for future application to kinase inhibitor discovery.  相似文献   
55.

Background

Photosynthetic microorganisms that directly channel solar energy to the production of molecular hydrogen are a potential future biofuel system. Building such a system requires installation of a hydrogenase in the photosynthetic organism that is both tolerant to oxygen and capable of hydrogen production. Toward this end, we have identified the [NiFe] hydrogenase from the marine bacterium Alteromonas macleodii “Deep ecotype” that is able to be heterologously expressed in cyanobacteria and has tolerance to partial oxygen. The A. macleodii enzyme shares sequence similarity with the uptake hydrogenases that favor hydrogen uptake activity over hydrogen evolution. To improve hydrogen evolution from the A. macleodii hydrogenase, we examined the three Fe-S clusters found in the small subunit of many [NiFe] uptake hydrogenases that presumably act as a molecular wire to guide electrons to or from the active site of the enzyme. Studies by others altering the medial cluster of a Desulfovibrio fructosovorans hydrogenase from 3Fe-4S to 4Fe-4S resulted in two-fold improved hydrogen evolution activity.

Results

We adopted a strategy of screening for improved hydrogenase constructs using an Escherichia coli expression system before testing in slower growing cyanobacteria. From the A. macleodii enzyme, we created a mutation in the gene encoding the hydrogenase small subunit that in other systems is known to convert the 3Fe-4S medial cluster to 4Fe-4S. The medial cluster substitution did not improve the hydrogen evolution activity of our hydrogenase. However, modifying both the medial cluster and the ligation of the distal Fe-S cluster improved in vitro hydrogen evolution activity relative to the wild type hydrogenase by three- to four-fold. Other properties of the enzyme including thermostability and tolerance to partial oxygen did not appear to be affected by the substitutions.

Conclusions

Our results show that substitution of amino acids altering the ligation of Fe-S clusters in the A. macleodii [NiFe] uptake hydrogenase resulted in increased hydrogen evolution activity. This activity can be recapitulated in multiple host systems and with purified protein. These results validate the approach of using an E. coli-cyanobacteria shuttle system for enzyme expression and improvement.
  相似文献   
56.

Background

WHO recommends regular viral load (VL) monitoring of patients on antiretroviral therapy (ART) for timely detection of virological failure, prevention of acquired HIV drug resistance (HIVDR) and avoiding unnecessary switching to second-line ART. However, the cost and complexity of routine VL testing remains prohibitive in most resource limited settings (RLS). We evaluated a simple, low–cost, qualitative viral–failure assay (VFA) on dried blood spots (DBS) in three clinical settings in Uganda.

Methods

We conducted a cross–sectional diagnostic accuracy study in three HIV/AIDS treatment centres at the Joint Clinical Research Centre in Uganda. The VFA employs semi-quantitative detection of HIV–1 RNA amplified from the LTR gene. We used paired dry blood spot (DBS) and plasma with the COBASAmpliPrep/COBASTaqMan, Roche version 2 (VLref) as the reference assay. We used the VFA at two thresholds of viral load, (>5,000 or >1,000 copies/ml).

Results

496 paired VFA and VLref results were available for comparative analysis. Overall, VFA demonstrated 78.4% sensitivity, (95% CI: 69.7%–87.1%), 93% specificity (95% CI: 89.7%–96.4%), 89.3% accuracy (95% CI: 85%–92%) and an agreement kappa = 0.72 as compared to the VLref. The predictive values of positivity and negativity among patients on ART for >12 months were 72.7% and 99.3%, respectively.

Conclusions

VFA allowed 89% of correct classification of VF. Only 11% of the patients were misclassified with the potential of unnecessary or late switch to second–line ART. Our findings present an opportunity to roll out simple and affordable VL monitoring for HIV–1 treatment in RLS.  相似文献   
57.
Peptidylarginine deiminases (PADs) post-translationally convert arginine into neutral citrulline residues. Our past work shows that PADs are expressed in the canine and murine mammary glands; however, the mechanisms regulating PAD expression and the function of citrullination in the normal mammary gland are unclear. Therefore, the first objective herein was to investigate regulation of PAD expression in mammary epithelial cells. We first examined PAD levels in CID-9 cells, which were derived from the mammary gland of mid-pregnant mice. PAD3 expression is significantly higher than all other PAD isoforms and mediates protein citrullination in CID-9 cells. We next hypothesized that prolactin regulates PAD3 expression. To test this, CID-9 cells were stimulated with 5 μg/mL of prolactin for 48 hours which significantly increases PAD3 mRNA and protein expression. Use of a JAK2 inhibitor and a dominant negative (DN)-STAT5 adenovirus indicate that prolactin stimulation of PAD3 expression is mediated by the JAK2/STAT5 signaling pathway in CID-9 cells. In addition, the human PAD3 gene promoter is prolactin responsive in CID-9 cells. Our second objective was to investigate the expression and activity of PAD3 in the lactating mouse mammary gland. PAD3 expression in the mammary gland is highest on lactation day 9 and coincident with citrullinated proteins such as histones. Use of the PAD3 specific inhibitor, Cl4-amidine, indicates that PAD3, in part, can citrullinate proteins in L9 mammary glands. Collectively, our results show that upregulation of PAD3 is mediated by prolactin induction of the JAK2/STAT5 signaling pathway, and that PAD3 appears to citrullinate proteins during lactation.  相似文献   
58.

Background

Innumerable opportunities for new genomic research have been stimulated by advancement in high-throughput next-generation sequencing (NGS). However, the pitfall of NGS data abundance is the complication of distinction between true biological variants and sequence error alterations during downstream analysis. Many error correction methods have been developed to correct erroneous NGS reads before further analysis, but independent evaluation of the impact of such dataset features as read length, genome size, and coverage depth on their performance is lacking. This comparative study aims to investigate the strength and weakness as well as limitations of some newest k-spectrum-based methods and to provide recommendations for users in selecting suitable methods with respect to specific NGS datasets.

Methods

Six k-spectrum-based methods, i.e., Reptile, Musket, Bless, Bloocoo, Lighter, and Trowel, were compared using six simulated sets of paired-end Illumina sequencing data. These NGS datasets varied in coverage depth (10× to 120×), read length (36 to 100 bp), and genome size (4.6 to 143 MB). Error Correction Evaluation Toolkit (ECET) was employed to derive a suite of metrics (i.e., true positives, false positive, false negative, recall, precision, gain, and F-score) for assessing the correction quality of each method.

Results

Results from computational experiments indicate that Musket had the best overall performance across the spectra of examined variants reflected in the six datasets. The lowest accuracy of Musket (F-score?=?0.81) occurred to a dataset with a medium read length (56 bp), a medium coverage (50×), and a small-sized genome (5.4 MB). The other five methods underperformed (F-score?<?0.80) and/or failed to process one or more datasets.

Conclusions

This study demonstrates that various factors such as coverage depth, read length, and genome size may influence performance of individual k-spectrum-based error correction methods. Thus, efforts have to be paid in choosing appropriate methods for error correction of specific NGS datasets. Based on our comparative study, we recommend Musket as the top choice because of its consistently superior performance across all six testing datasets. Further extensive studies are warranted to assess these methods using experimental datasets generated by NGS platforms (e.g., 454, SOLiD, and Ion Torrent) under more diversified parameter settings (k-mer values and edit distances) and to compare them against other non-k-spectrum-based classes of error correction methods.
  相似文献   
59.
60.
The Ran GTPase regulates nuclear import and export by controlling the assembly state of transport complexes. This involves the direct action of RanGTP, which is generated in the nucleus by the chromatin‐associated nucleotide exchange factor, RCC1. Ran interactions with RCC1 contribute to formation of a nuclear:cytoplasmic (N:C) Ran protein gradient in interphase cells. In previous work, we showed that the Ran protein gradient is disrupted in fibroblasts from Hutchinson–Gilford progeria syndrome (HGPS) patients. The Ran gradient disruption in these cells is caused by nuclear membrane association of a mutant form of Lamin A, which induces a global reduction in heterochromatin marked with Histone H3K9me3 and Histone H3K27me3. Here, we have tested the hypothesis that heterochromatin controls the Ran gradient. Chemical inhibition and depletion of the histone methyltransferases (HMTs) G9a and GLP in normal human fibroblasts reduced heterochromatin levels and caused disruption of the Ran gradient, comparable to that observed previously in HGPS fibroblasts. HMT inhibition caused a defect in nuclear localization of TPR, a high molecular weight protein that, owing to its large size, displays a Ran‐dependent import defect in HGPS. We reasoned that pathways dependent on nuclear import of large proteins might be compromised in HGPS. We found that nuclear import of ATM requires the Ran gradient, and disruption of the Ran gradient in HGPS causes a defect in generating nuclear γ‐H2AX in response to ionizing radiation. Our data suggest a lamina–chromatin–Ran axis is important for nuclear transport regulation and contributes to the DNA damage response.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号