首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1577篇
  免费   109篇
  国内免费   1篇
  1687篇
  2023年   13篇
  2022年   34篇
  2021年   57篇
  2020年   25篇
  2019年   36篇
  2018年   32篇
  2017年   36篇
  2016年   36篇
  2015年   85篇
  2014年   75篇
  2013年   86篇
  2012年   136篇
  2011年   119篇
  2010年   90篇
  2009年   52篇
  2008年   83篇
  2007年   100篇
  2006年   71篇
  2005年   70篇
  2004年   56篇
  2003年   59篇
  2002年   61篇
  2001年   11篇
  2000年   18篇
  1999年   15篇
  1998年   12篇
  1997年   14篇
  1996年   7篇
  1995年   7篇
  1994年   5篇
  1993年   5篇
  1992年   8篇
  1991年   4篇
  1990年   6篇
  1989年   8篇
  1987年   7篇
  1986年   7篇
  1985年   5篇
  1984年   9篇
  1983年   12篇
  1982年   12篇
  1981年   13篇
  1979年   8篇
  1978年   4篇
  1976年   6篇
  1975年   4篇
  1974年   6篇
  1973年   8篇
  1967年   4篇
  1964年   3篇
排序方式: 共有1687条查询结果,搜索用时 11 毫秒
41.
Black soldier fly (BSF) larvae, Hermetia illucens L. (Diptera: Stratiomyidae), bio-convert organic side streams into high-quality biomass, the composition of which largely depends on the side stream used. In the present study, BSF larvae were reared on feed substrates composed of dried brewers’ spent grains, each supplemented with either water, waste brewer’s yeast, or a mixture of waste brewer’s yeast and cane molasses to obtain 12 different substrates: barley/water, barley/yeast, barley/yeast/molasses, malted barley/water, malted barley/yeast, malted barley/yeast/molasses, malted corn/water, malted corn/yeast, malted corn/yeast/molasses, sorghum-barley/water, sorghum-barley/yeast, and sorghum-barley/yeast/molasses. The crude protein, fat, ash, and mineral contents of the BSF larvae fed each feed substrate were quantified by chemical analyses. The effect of substrate, supplementation, and their interaction on crude protein, fat, and ash contents of BSF larval body composition was significant. Calcium, phosphorus, and potassium were the most abundant macrominerals in the larvae and their concentrations differed significantly among substrates. These findings provide important information to support the use of BSF larval meal as potential new source of nutrient-rich and sustainable animal feed ingredients to substitute expensive and scarce protein sources such as fishmeal and soya bean meal.  相似文献   
42.
Morales et al. test predictions of adaptive radiation theory and phenotypic convergence in Myotis bats using genomic target capture and a morphological dataset that represents 80% of the species described for this genus. The authors demonstrate that ecomorphological convergence has occurred multiple times throughout the history of Myotis, despite finding no diversification rate shifts associated with phenotypic adaptation. These patterns provide evidence that parallel adaptive radiations can be the result of nonadaptive lineage diversification followed by repetitive exploitation of ecomorphological solutions.  相似文献   
43.
The Agrobacterium tumefaciens VirB/VirD4 type IV secretion system is composed of a translocation channel and an extracellular T pilus. Bitopic VirB10, the VirB7 lipoprotein, and VirB9 interact to form a cell envelope-spanning structural scaffold termed the “core complex” that is required for the assembly of both structures. The related pKM101-encoded core complex is composed of 14 copies each of these VirB homologs, and the transmembrane (TM) α helices of VirB10-like TraF form a 55-Å-diameter ring at the inner membrane. Here, we report that the VirB10 TM helix possesses two types of putative dimerization motifs, a GxxxA (GA4) motif and two leucine (Leu1, Leu2) zippers. Mutations in the Leu1 motif disrupted T-pilus biogenesis, but these or other mutations in the GA4 or Leu2 motif did not abolish substrate transfer. Replacement of the VirB10 TM domain with a nondimerizing poly-Leu/Ala TM domain sequence also blocked pilus production but not substrate transfer or formation of immunoprecipitable complexes with the core subunits VirB7 and VirB9 and the substrate receptor VirD4. The VirB10 TM helix formed weak homodimers in Escherichia coli, as determined with the TOXCAT assay, whereas replacement of the VirB10 TM helix with the strongly dimerizing TM helix from glycophorin A blocked T-pilus biogenesis in A. tumefaciens. Our findings support a model in which VirB10''s TM helix contributes to the assembly or activity of the translocation channel as a weakly self-interacting membrane anchor but establishes a heteromeric TM-TM helix interaction via its Leu1 motif that is critical for T-pilus biogenesis.  相似文献   
44.

Background

WHO recommends regular viral load (VL) monitoring of patients on antiretroviral therapy (ART) for timely detection of virological failure, prevention of acquired HIV drug resistance (HIVDR) and avoiding unnecessary switching to second-line ART. However, the cost and complexity of routine VL testing remains prohibitive in most resource limited settings (RLS). We evaluated a simple, low–cost, qualitative viral–failure assay (VFA) on dried blood spots (DBS) in three clinical settings in Uganda.

Methods

We conducted a cross–sectional diagnostic accuracy study in three HIV/AIDS treatment centres at the Joint Clinical Research Centre in Uganda. The VFA employs semi-quantitative detection of HIV–1 RNA amplified from the LTR gene. We used paired dry blood spot (DBS) and plasma with the COBASAmpliPrep/COBASTaqMan, Roche version 2 (VLref) as the reference assay. We used the VFA at two thresholds of viral load, (>5,000 or >1,000 copies/ml).

Results

496 paired VFA and VLref results were available for comparative analysis. Overall, VFA demonstrated 78.4% sensitivity, (95% CI: 69.7%–87.1%), 93% specificity (95% CI: 89.7%–96.4%), 89.3% accuracy (95% CI: 85%–92%) and an agreement kappa = 0.72 as compared to the VLref. The predictive values of positivity and negativity among patients on ART for >12 months were 72.7% and 99.3%, respectively.

Conclusions

VFA allowed 89% of correct classification of VF. Only 11% of the patients were misclassified with the potential of unnecessary or late switch to second–line ART. Our findings present an opportunity to roll out simple and affordable VL monitoring for HIV–1 treatment in RLS.  相似文献   
45.

Background

Innumerable opportunities for new genomic research have been stimulated by advancement in high-throughput next-generation sequencing (NGS). However, the pitfall of NGS data abundance is the complication of distinction between true biological variants and sequence error alterations during downstream analysis. Many error correction methods have been developed to correct erroneous NGS reads before further analysis, but independent evaluation of the impact of such dataset features as read length, genome size, and coverage depth on their performance is lacking. This comparative study aims to investigate the strength and weakness as well as limitations of some newest k-spectrum-based methods and to provide recommendations for users in selecting suitable methods with respect to specific NGS datasets.

Methods

Six k-spectrum-based methods, i.e., Reptile, Musket, Bless, Bloocoo, Lighter, and Trowel, were compared using six simulated sets of paired-end Illumina sequencing data. These NGS datasets varied in coverage depth (10× to 120×), read length (36 to 100 bp), and genome size (4.6 to 143 MB). Error Correction Evaluation Toolkit (ECET) was employed to derive a suite of metrics (i.e., true positives, false positive, false negative, recall, precision, gain, and F-score) for assessing the correction quality of each method.

Results

Results from computational experiments indicate that Musket had the best overall performance across the spectra of examined variants reflected in the six datasets. The lowest accuracy of Musket (F-score?=?0.81) occurred to a dataset with a medium read length (56 bp), a medium coverage (50×), and a small-sized genome (5.4 MB). The other five methods underperformed (F-score?<?0.80) and/or failed to process one or more datasets.

Conclusions

This study demonstrates that various factors such as coverage depth, read length, and genome size may influence performance of individual k-spectrum-based error correction methods. Thus, efforts have to be paid in choosing appropriate methods for error correction of specific NGS datasets. Based on our comparative study, we recommend Musket as the top choice because of its consistently superior performance across all six testing datasets. Further extensive studies are warranted to assess these methods using experimental datasets generated by NGS platforms (e.g., 454, SOLiD, and Ion Torrent) under more diversified parameter settings (k-mer values and edit distances) and to compare them against other non-k-spectrum-based classes of error correction methods.
  相似文献   
46.
47.
The Ran GTPase regulates nuclear import and export by controlling the assembly state of transport complexes. This involves the direct action of RanGTP, which is generated in the nucleus by the chromatin‐associated nucleotide exchange factor, RCC1. Ran interactions with RCC1 contribute to formation of a nuclear:cytoplasmic (N:C) Ran protein gradient in interphase cells. In previous work, we showed that the Ran protein gradient is disrupted in fibroblasts from Hutchinson–Gilford progeria syndrome (HGPS) patients. The Ran gradient disruption in these cells is caused by nuclear membrane association of a mutant form of Lamin A, which induces a global reduction in heterochromatin marked with Histone H3K9me3 and Histone H3K27me3. Here, we have tested the hypothesis that heterochromatin controls the Ran gradient. Chemical inhibition and depletion of the histone methyltransferases (HMTs) G9a and GLP in normal human fibroblasts reduced heterochromatin levels and caused disruption of the Ran gradient, comparable to that observed previously in HGPS fibroblasts. HMT inhibition caused a defect in nuclear localization of TPR, a high molecular weight protein that, owing to its large size, displays a Ran‐dependent import defect in HGPS. We reasoned that pathways dependent on nuclear import of large proteins might be compromised in HGPS. We found that nuclear import of ATM requires the Ran gradient, and disruption of the Ran gradient in HGPS causes a defect in generating nuclear γ‐H2AX in response to ionizing radiation. Our data suggest a lamina–chromatin–Ran axis is important for nuclear transport regulation and contributes to the DNA damage response.  相似文献   
48.
Purpose

As knowledge grows of the potentially harmful effects of chemicals in widespread use, emerging contaminants have become a major source of concern and uncertainty for public health officials and water quality managers. Perfluorinated alkyl substances, often referred to as perfluorinated compounds, have come under recent scrutiny and are present in groundwater at many sites across the USA. We examine the life cycle impacts of treating drinking water at one such site.

Methods

We assembled life cycle models for groundwater treatment and bottled water delivery to residents of Wright-Patterson Air Force Base, Ohio, where wells were recently taken out of service due to concerns related to perfluoroalkyl and polyfluoroalkyl substance (PFAS) contamination. Two treatment methods, granular activated carbon filtration and ion-exchange columns, were modeled under a range of contaminant concentrations covering three orders of magnitude: 0.7, 7.0, and 70 μg/L PFAS. On-site infrastructure, operations, and adsorbent cycling were included in models. Impacts of bottled water production and supply were assessed using two data sets reflecting a range of production and supply chain assumptions. Uncertainty in input data was captured using Monte Carlo simulations.

Results and discussion

Results show that for contaminant concentrations below 70 μg/L, the dominant contributor to life cycle impacts is electricity use at the treatment facility. Production, reactivation, and disposal of treatment media become major sources of impact only at very high PFAS concentrations. Though the life cycle impacts of bottled water are up to three orders of magnitude higher than remediated groundwater on a volumetric basis, supplementing a contaminated water supply with bottled drinking water may result in lower life cycle human health impacts when only a small proportion of the total population is vulnerable.

Conclusions

These results provide quantitative data and proposed scenarios for water quality managers and risk management officials in developing plans to address PFAS contamination and emerging contaminants in general. However, more information on the direct human health effects of these poorly understood pollutants is needed before the trade-offs in life cycle health impacts can be comprehensively assessed.

  相似文献   
49.
Glutathione (GSH) is the major intracellular thiol present in 1-10-mm concentrations in human cells. However, the redox potential of the 2GSH/GSSG (glutathione disulfide) couple in cells varies in association with proliferation, differentiation, or apoptosis from -260 mV to -200 or -170 mV. Hydrogen peroxide is transiently produced as second messenger in receptor-mediated growth factor signaling. To understand oxidation mechanisms by GSSG or nitric oxide-related nitrosylation we studied effects on glutaredoxins (Grx), which catalyze GSH-dependent thiol-disulfide redox reactions, particularly reversible glutathionylation of protein sulfhydryl groups. Human Grx1 and Grx2 contain Cys-Pro-Tyr-Cys and Cys-Ser-Tyr-Cys active sites and have three and two additional structural Cys residues, respectively. We analyzed the redox state and disulfide pairing of Cys residues upon GSSG oxidation and S-nitrosylation. Cytosolic/nuclear Grx1 was partly inactivated by both S-nitrosylation and oxidation. Inhibition by nitrosylation was reversible under anaerobic conditions; aerobically it was stronger and irreversible, indicating inactivation by nitration. Oxidation of Grx1 induced a complex pattern of disulfide-bonded dimers and oligomers formed between Cys-8 and either Cys-79 or Cys-83. In addition, an intramolecular disulfide between Cys-79 and Cys-83 was identified, predicted to have a profound effect on the three-dimensional structure. In contrast, mitochondrial Grx2 retains activity upon oxidation, did not form disulfide-bonded dimers or oligomers, and could not be S-nitrosylated. The dimeric iron sulfur cluster-coordinating inactive form of Grx2 dissociated upon nitrosylation, leading to activation of the protein. The striking differences between Grx1 and Grx2 reflect their diverse regulatory functions in vivo and also adaptation to different subcellular localization.  相似文献   
50.
Contemporary classification of human disease derives from observational correlation between pathological analysis and clinical syndromes. Characterizing disease in this way established a nosology that has served clinicians well to the current time, and depends on observational skills and simple laboratory tools to define the syndromic phenotype. Yet, this time-honored diagnostic strategy has significant shortcomings that reflect both a lack of sensitivity in identifying preclinical disease, and a lack of specificity in defining disease unequivocally. In this paper, we focus on the latter limitation, viewing it as a reflection both of the different clinical presentations of many diseases (variable phenotypic expression), and of the excessive reliance on Cartesian reductionism in establishing diagnoses. The purpose of this perspective is to provide a logical basis for a new approach to classifying human disease that uses conventional reductionism and incorporates the non-reductionist approach of systems biomedicine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号