首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   226篇
  免费   16篇
  242篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   4篇
  2020年   5篇
  2019年   7篇
  2018年   3篇
  2017年   6篇
  2016年   14篇
  2015年   13篇
  2014年   18篇
  2013年   22篇
  2012年   30篇
  2011年   16篇
  2010年   13篇
  2009年   10篇
  2008年   19篇
  2007年   8篇
  2006年   14篇
  2005年   14篇
  2004年   11篇
  2003年   6篇
  2002年   4篇
  1999年   1篇
排序方式: 共有242条查询结果,搜索用时 15 毫秒
81.
When cells are confronted with an insufficient supply of nutrients in their extracellular fluid, they may begin to cannibalize some of their internal proteins as well as whole organelles for reuse in the synthesis of new components. This process is termed autophagy and it involves the formation of a double-membrane structure within the cell, which encloses the material to be degraded into a vesicle called an autophagosome. The autophagosome subsequently fuses with a lysosome/vacuole whose hydrolytic enzymes degrade the sequestered organelle. Degradation of peroxisomes is a specific type of autophagy, which occurs in a selective manner and has been mostly studied in yeast. Recently, it was reported that a similar selective process of autophagy occurs in mammalian cells with proliferated peroxisomes. Here we discuss characteristics of the autophagy of peroxisomes in mammalian cells and present a comprehensive model of their likely mechanism of degradation on the basis of known and common elements from other systems.  相似文献   
82.
Staphylococcus aureus (S. aureus)-specific bacteriophage was used as a probe for detection of methicillin-resistant S. aureus (MRSA) in aqueous solution using a novel optical method. Biorecognition phage monolayers transferred to glass substrates using Langmuir-Blodgett (LB) technique were exposed individually to MRSA in solution at logarithmic concentrations ranging from 10(6) to 10(9)cfu/ml, and observed for real-time binding using a CytoVivatrade mark optical light microscope system. Results indicate that LB monolayers possessed high levels of elasticity (K), measuring 22 and 29mN/m for 10(9) and 10(11)pfu/ml phage concentrations, respectively. Near-instantaneous MRSA-phage binding produced 33+/-5%, 10+/-1%, 1.1+/-0.1%, and 0.09+/-0.01% coverage of the substrate that directly correlated to a decrease in MRSA concentrations of 10(9), 10(8), 10(7), and 10(6)cfu/ml. The exclusive selectivity of phage monolayers was verified with Salmonella enterica subsp. enterica serovar typhimurium (S. typhimurium) and Bacillus subtilis.  相似文献   
83.
NOS isoform activation is related to liver failure during sepsis, but the mechanisms driving mitochondrial impairment remain unclear. We induced sepsis by LPS administration to inducible nitric oxide synthase (iNOS?/?) and neuronal nitric oxide synthase (nNOS?/?) mice and their respective wild-type controls to examine the contribution of iNOS to mitochondrial failure in the absence of nNOS. To achieve this goal, the determination of messenger RNA (mRNA) expression and protein content of iNOS in cytosol and mitochondria, the mitochondrial respiratory complex content, and the levels of nitrosative and oxidative stress (by measuring 3-nitrotyrosine residues and carbonyl groups, respectively) were examined in the liver of control and septic mice. We detected strongly elevated iNOS mRNA expression and protein levels in liver cytosol and mitochondria of septic mice, which were related to enhanced oxidative and nitrosative stress, and with fewer changes in respiratory complexes. The absence of the iNOS, but not nNOS, gene absolutely prevented mitochondrial impairment during sepsis. Moreover, the nNOS gene did not modify the expression and the effects of iNOS here shown. Melatonin administration counteracted iNOS activation and mitochondrial damage and enhanced the expression of the respiratory complexes above the control values. These effects were unrelated to the presence or absence of nNOS. iNOS is a main target to prevent liver mitochondrial impairment during sepsis, and melatonin represents an efficient antagonist of these iNOS-dependent effects whereas it may boost mitochondrial respiration to enhance liver survival.  相似文献   
84.
Self-assembly of molecules is one of the fundamental processes in biology and in supramolecular chemistry. Guanosine (Guo) and its derivatives are among the widely studied molecules because of self-assembly abilities. Their tetrameric associates are the nature of telomeric DNA, and furthermore they are fundamental building blocks of supramolecular reversible gels, which may arise in certain physical and chemical conditions. Although poorly soluble in water, Guo forms interesting structures with guanosine 5'-monophosphate salt (GMP) in the TRIS buffer. We used electronic circular dichroism and vibrational circular dichroism to describe the thermal response of gels formed by the Guo/GMP binary mixture. Using these complementary techniques suitable to study conformational changes of chiral compounds, we obtained information about the involvement of functional groups and weak interactions in the guanosine quartet (G(4)) and stacked G(4) structures.  相似文献   
85.
Natural tetrapeptide Goralatide inhibits primitive hematopoietic cell proliferation but reported to be rather unstable in solution (half‐life 4.5 min). In this work, we report the synthesis of an aminoxy analog of Goralatide. Aminoxy moiety is expected to provide increased stability and bioavailability of the Goralatide analog. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
86.
Photosynthetic organisms are exposed to drastic changes in light conditions, which can affect their photosynthetic efficiency and induce photodamage. To face these changes, they have developed a series of acclimation mechanisms. In this work, we have studied the acclimation strategies of Chlamydomonas reinhardtii, a model green alga that can grow using various carbon sources and is thus an excellent system in which to study photosynthesis. Like other photosynthetic algae, it has evolved inducible mechanisms to adapt to conditions where carbon supply is limiting. We have analyzed how the carbon availability influences the composition and organization of the photosynthetic apparatus and the capacity of the cells to acclimate to different light conditions. Using electron microscopy, biochemical, and fluorescence measurements, we show that differences in CO2 availability not only have a strong effect on the induction of the carbon-concentrating mechanisms but also change the acclimation strategy of the cells to light. For example, while cells in limiting CO2 maintain a large antenna even in high light and switch on energy-dissipative mechanisms, cells in high CO2 reduce the amount of pigments per cell and the antenna size. Our results show the high plasticity of the photosynthetic apparatus of C. reinhardtii. This alga is able to use various photoacclimation strategies, and the choice of which to activate strongly depends on the carbon availability.Light sustains virtually all life on Earth through the process of photosynthesis. However, light can be very harmful for oxygenic photosynthetic organisms, as excess absorption can lead to the production of reactive oxygen species. In order to survive and grow, these organisms have developed various photoacclimation mechanisms operating on different time scales that protect the cell from photodamage. In the green alga Chlamydomonas reinhardtii, these mechanisms vary from negative phototaxis and multicomponent nonphotochemical quenching (NPQ) to a number of physiological and biochemical changes (Erickson et al., 2015). C. reinhardtii cells are around 10 μm in diameter, and a large part of their total volume is occupied by a single horseshoe-shaped chloroplast (Sager and Palade, 1957). The photosynthetic machinery responsible for the light reactions is located in thylakoid membranes and contains four major components: PSII, cytochrome b6f, PSI, and ATP synthase. Both photosystems bind chlorophyll (Chl) and carotenoid (Car) and are composed of a core and several outer antennae pigment-protein complexes, the main function of which is light harvesting and its conversion into chemical energy. The PSII core is composed of D1, D2, CP43, and CP47 pigment-protein complexes and several smaller subunits, the number of which varies between organisms (Shi et al., 2012). The outer antenna contains the light-harvesting complex II (LHCII), which in C. reinhardtii is encoded by nine LHCBM genes, and the minor antennae CP26 and CP29 (Nield et al., 2000; Teramoto et al., 2001; Natali and Croce, 2015). These complexes are assembled together to form PSII-LHCII supercomplexes (Tokutsu et al., 2012; Drop et al., 2014). The PSI core is composed of a PSAA-PSAB heterodimer and a number of smaller subunits (Jensen et al., 2007), and in C. reinhardtii the LHCI antenna consists of nine LHCA proteins (Mozzo et al., 2010) that are associated with the core to form the PSI-LHCI complex (Stauber et al., 2009; Drop et al., 2011).The composition and organization of the thylakoid membrane is light dependent. The gene expression of different LHCs has been reported to be affected by light acclimation (Teramoto et al., 2002; Durnford et al., 2003; Yamano et al., 2008) and to be NAB1 regulated (Mussgnug et al., 2005). It has been observed that long-term high-light exposure of C. reinhardtii cells leads to a 50% decrease of Chl content (Neale and Melis, 1986; Bonente et al., 2012) and to changes in Chl-to-Car ratio (Niyogi et al., 1997a; Baroli et al., 2003; Bonente et al., 2012), suggesting reduction of the antenna size (Neale and Melis, 1986), although, in a more recent report (Bonente et al., 2012), it was concluded that the antenna size is not modulated by light in this alga. Recently, a dependence of the antenna components on the carbon availability also was reported. It was shown that, when cells grown in acetate are shifted from high to low CO2 concentration, the functional antenna size of PSII decreases and a down-regulation of LHCBM6/8 occurs (Berger et al., 2014).In the short term, the main response to high light is the dissipation of energy absorbed in excess heat in a process called qE, or energy-dependent quenching, which is the fastest component of NPQ. In land plants, the main player in this process is the protein PsbS (Li et al., 2002, 2004), while in C. reinhardtii, the process is centered around LHCSR1 and LHCSR3 (Peers et al., 2009; Dinc et al., 2016). LHCSR3, the most studied of the two, is a pigment-protein complex that is expressed within 1 h of high-light exposure (Allorent et al., 2013) in combination with CO2 limitation (Yamano et al., 2008; Maruyama et al., 2014). The qE onset is triggered by lumen acidification sensed by LHCSR3/1 (Bonente et al., 2011; Liguori et al., 2013; Tokutsu and Minagawa, 2013; Dinc et al., 2016).Cars are well known to be involved in photoprotection. They quench triplet Chl and scavenge singlet oxygen (1O2; Frank and Cogdell, 1996). In C. reinhardtii, the antioxidant role of xanthophylls is well illustrated by the mutant npq1 lor1 lacking lutein and zeaxanthin (Niyogi et al., 1997b). This mutant is deficient in qE, but compared with other qE-deficient mutants like npq4 (Peers et al., 2009) and npq5 (Elrad et al., 2002), which are LHCSR3 and LHCBM1 knockouts, respectively, it is extremely light sensitive, due to the absence of quenching of triplet Chl and 1O2 by zeaxanthin and lutein.Aquatic oxygenic photosynthetic organisms meet several challenges in CO2 fixation (Moroney and Ynalvez, 2007). First, the diffusion of CO2 in water is 10,000 times slower than in air. Second, the CO2-fixing enzyme Rubisco is not selective for CO2 and also binds oxygen, resulting in the process of photorespiration. Third, the form of inorganic carbon depends on the pH (i.e. in alkaline pH, it is HCO3, while in acidic pH, it is CO2; Beardall, 1981; Gehl et al., 1987). This diminishes even further the availability of CO2 in the cell. In order to overcome these CO2 fixation barriers, algae have developed carbon-concentrating mechanisms (CCMs; Moroney and Ynalvez, 2007). The essence of these processes lies in the active pumping of inorganic carbon in the cell via a number of transporters that concentrate it in the pyrenoid, a ball-like structure containing Rubisco, Rubisco activase, and intrapyrenoid thylakoids and surrounded by a starch sheath. In the pyrenoid, HCO3 is converted to CO2 by CARBONIC ANHYDRASE3 (CAH3; Blanco-Rivero et al., 2012; Sinetova et al., 2012) and then fixed by Rubisco in the Calvin-Benson-Bassham cycle. CAH3 also is suggested to provide HCO3 in the proximity of the oxygen-evolving complex, where it may function as a proton carrier, removing H+ from water splitting to avoid photoinhibition (Villarejo et al., 2002; Shutova et al., 2008).C. reinhardtii also can grow mixotrophically using alternative organic carbon sources present in its environment. For example, it can take up acetate, which is then incorporated into the citric cycle, producing reducing equivalents and CO2 (Johnson and Alric, 2012), and into the glyoxylate cycle, producing malate (Lauersen et al., 2016). In the presence of acetate, it has been reported that CO2 uptake and oxygen evolution were decreased by half under saturating CO2 and light intensities without affecting PSII efficiency, respiration, and cell growth (Heifetz et al., 2000). In addition, reactions of the oxidative pentose phosphate and glycolysis pathways, inactive under phototrophic conditions, show substantial flux under mixotrophic conditions (Chapman et al., 2015). Furthermore, acetate can replace PSII-associated HCO3, reducing 1O2 formation and, therefore, acting as a photoprotector during high-light acclimation (Roach et al., 2013).In short, high-light acclimation is a complex, multicomponent process that happens on different time scales. Furthermore, it is embedded in the overall metabolic network and is potentially influenced by different nutrients and metabolic states. A thorough understanding of this process and its regulation is crucial for fundamental research and applications. To determine if different carbon supply conditions trigger different light acclimation strategies and photoprotective responses, we systematically studied C. reinhardtii cells grown in mixotrophic, photoautotrophic, and high-CO2 photoautotrophic conditions in different light intensities.We show that C. reinhardtii cells use different strategies to acclimate to high light depending on the carbon availability and trophic status. These results underline the strong connection between metabolism and light acclimation responses and reconcile the data from various reports. Furthermore, our study demonstrates how, in a dynamic system such as C. reinhardtii, a single change in growth conditions has large effects at multiple levels.  相似文献   
87.
88.
The use of bacterial flagella as templates for the immobilization of Pd and Au nanoparticles is described. Complete coverage of D. desulfuricans flagellar filaments by Pd(0) nanoparticles was obtained via the H(2)-mediated reduction of Pd(NH3)4]Cl2 but similar results were not obtained using HAuCl4. The introduction of additional cysteine-derived thiol residues in the E. coli FliC protein increased Au(III) sorption and reduction onto the surface of the flagellar filament and resulted in the production of stabilized Au(0) nanoparticles of approximately 20-50 nm diameter. We demonstrate the application of molecular engineering techniques to manufacture biologically passivated Au(0) nanoparticles of a size suitable for catalytic applications.  相似文献   
89.
Low levels of hydrogen peroxide (H(2)O(2)) are mitogenic to mammalian cells and stimulate the hyperphosphorylation of heterogeneous nuclear ribonucleoprotein C (hnRNP-C) by protein kinase CK1alpha. However, the mechanisms by which CK1alpha is regulated have been unclear. Here it is demonstrated that low levels of H(2)O(2) stimulate the rapid dephosphorylation of CK1alphaLS, a nuclear splice form of CK1alpha. Furthermore, it is demonstrated that either treatment of endothelial cells with H(2)O(2), or dephosphorylation of CK1alphaLS in vitro enhances the association of CK1alphaLS with hnRNP-C. In addition, dephosphorylation of CK1alphaLS in vitro enhances the kinase's ability to phosphorylate hnRNP-C. While CK1alpha appears to be present in all metazoans, analysis of CK1alpha genomic sequences from several species reveals that the alternatively spliced nuclear localizing L-insert is unique to vertebrates, as is the case for hnRNP-C. These observations indicate that CK1alphaLS and hnRNP-C represent conserved components of a vertebrate-specific H(2)O(2)-responsive nuclear signaling pathway.  相似文献   
90.
Quantitative peptidomics was used to compare levels of peptides in wild type (WT) and Cpefat/fat mice, which lack carboxypeptidase E (CPE) activity because of a point mutation. Six different brain regions were analyzed: amygdala, hippocampus, hypothalamus, prefrontal cortex, striatum, and thalamus. Altogether, 111 neuropeptides or other peptides derived from secretory pathway proteins were identified in WT mouse brain extracts by tandem mass spectrometry, and another 47 peptides were tentatively identified based on mass and other criteria. Most secretory pathway peptides were much lower in Cpefat/fat mouse brain, relative to WT mouse brain, indicating that CPE plays a major role in their biosynthesis. Other peptides were only partially reduced in the Cpefat/fat mice, indicating that another enzyme (presumably carboxypeptidase D) contributes to their biosynthesis. Approximately 10% of the secretory pathway peptides were present in the Cpefat/fat mouse brain at levels similar to those in WT mouse brain. Many peptides were greatly elevated in the Cpefat/fat mice; these peptide processing intermediates with C‐terminal Lys and/or Arg were generally not detectable in WT mice. Taken together, these results indicate that CPE contributes, either directly or indirectly, to the production of the majority of neuropeptides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号