首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   368篇
  免费   44篇
  2021年   6篇
  2017年   3篇
  2016年   6篇
  2015年   12篇
  2014年   13篇
  2013年   15篇
  2012年   9篇
  2011年   16篇
  2010年   11篇
  2009年   10篇
  2008年   9篇
  2007年   13篇
  2006年   13篇
  2005年   12篇
  2004年   11篇
  2003年   15篇
  2002年   9篇
  2001年   6篇
  2000年   10篇
  1999年   11篇
  1998年   10篇
  1997年   3篇
  1996年   3篇
  1995年   5篇
  1994年   8篇
  1993年   3篇
  1992年   4篇
  1990年   5篇
  1989年   4篇
  1988年   8篇
  1987年   5篇
  1985年   9篇
  1984年   12篇
  1983年   4篇
  1982年   8篇
  1981年   12篇
  1979年   7篇
  1978年   5篇
  1977年   12篇
  1976年   5篇
  1975年   11篇
  1974年   3篇
  1973年   9篇
  1972年   8篇
  1971年   3篇
  1970年   3篇
  1969年   3篇
  1967年   3篇
  1957年   4篇
  1953年   2篇
排序方式: 共有412条查询结果,搜索用时 15 毫秒
351.
Cellular FLIP long form (c-FLIP(L)) is a caspase-defective homologue of caspase-8 that blocks apoptosis by death receptors. The expression of c-FLIP(L) in T cells can also augment extracellular signal-regulated kinase phosphorylation after TCR ligation via the association of c-FLIP(L) with Raf-1. This contributes to the hyperproliferative capacity of T cells from c-FLIP(L)-transgenic mice. In this study we show that activated CD4(+) T cells from c-FLIP(L)-transgenic mice produce increased amounts of Th2 cytokines and decreased amounts of Th1 cytokines. This correlates with increased serum concentrations of the Th2-dependent IgG1 and IgE. The Th2 bias of c-FLIP(L)-transgenic CD4(+) T cells parallels impaired NF-kappa B activity and increased levels of GATA-3, which contribute, respectively, to decreased IFN-gamma and increased Th2 cytokines. The Th2 bias of c-FLIP(L)-transgenic mice extends to an enhanced sensitivity to OVA-induced asthma. Taken together, these results show that c-FLIP(L) can influence cytokine gene expression to promote Th2-driven allergic reaction, in addition to its traditional role of blocking caspase activation induced by death receptors.  相似文献   
352.
Pilin is the major structural protein that forms type IV pili of various pathogenic bacteria, including Pseudomonas aeruginosa. Pilin is involved in attachment of the bacterium to host cells during infection, in the initiation of immune response, and serves as a receptor for a variety of bacteriophage. We have used (15)N nuclear magnetic resonance relaxation measurements to probe the backbone dynamics of an N-terminally truncated monomeric pilin from P. aeruginosa strain K122-4. (15)N-T(1), -T(2), and [(1)H]-(15)N nuclear Overhauser enhancement measurements were carried out at three magnetic field strengths. The measurements were interpreted using the Lipari-Szabo model-free analysis, which reveals the amplitude of spatial restriction for backbone N-NH bond vectors with respect to nano- to picosecond time-scale motions. Regions of well-defined secondary structure exhibited consistently low-amplitude spatial fluctuations, while the terminal and loop regions showed larger amplitude motions in the subnano- to picosecond time-scale. Interestingly, the C-terminal disulfide loop region that contains the receptor binding domain was found to be relatively rigid on the pico- to nanosecond time-scale but exhibited motion in the micro- to millisecond time-scale. It is notable that this disulfide loop displays a conserved antigenic epitope and mediates binding to the asialo-GM(1) cell surface receptor. The present study suggests that a rigid backbone scaffold mediates attachment to the host cell receptor, and also maintains the conformation of the conserved antigenic epitope for antibody recognition. In addition, slower millisecond time-scale motions are likely to be crucial for conferring a range of specificity for these interactions. Characterization of pilin dynamics will aid in developing a detailed understanding of infection, and will facilitate the design of more efficient anti-adhesin synthetic vaccines and therapeutics against pathogenic bacteria containing type IV pili.  相似文献   
353.
The backbone dynamics of a 15N-labeled recombinant PAK pilin peptide spanning residues 128–144 in the C-terminal receptor binding domain of Pseudomonas aeruginosa pilin protein strain PAK (Lys128-Cys-Thr-Ser-Asp-Gln-Asp-Glu-Gln-Phe-Ile-Pro-Lys-Gly-Cys-Ser-Lys144) were probed by measurements of 15N NMR relaxation. This PAK(128–144) sequence is a target for the design of a synthetic peptide vaccine effective against multiple strains of P. aeruginosa infection. The 15N longitudinal (T1) and transverse (T2) relaxation rates and the steady-state heteronuclear {1H}-15N NOE were measured at three fields (7.04, 11.74 and 14.1 Tesla), five temperatures (5, 10, 15, 20, and 25°C ) and at pH 4.5 and 7.2. Relaxation data was analyzed using both the `model-free' formalism [Lipari, G. and Szabo, A. (1982) J. Am. Chem. Soc., 104, 4546–4559 and 4559–4570] and the reduced spectral density mapping approach [Farrow, N.A., Szabo, A., Torchia, D.A. and Kay, L.E. (1995) J. Biomol. NMR, 6, 153–162]. The relaxation data, spectral densities and order parameters suggest that the type I and type II -turns spanning residues Asp134-Glu-Gln-Phe137 and Pro139-Lys-Gly-Cys142, respectively, are the most ordered and structured regions of the peptide. The biological implications of these results will be discussed in relation to the role that backbone motions play in PAK pilin peptide immunogenicity, and within the framework of developing a pilin peptide vaccine capable of conferring broad immunity across P. aeruginosa strains.  相似文献   
354.
A recent large-scale meta-analysis of genome-wide studies has identified 95 loci, 59 of them novel, as statistically significant predictors of blood lipid traits; we tested whether the same loci explain the observed heterogeneity in response to lipid-lowering therapy with fenofibrate. Using data from the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN, n = 861) we fit linear mixed models with the genetic markers as predictors and high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, total cholesterol, and triglyceride concentrations as outcomes. For all four traits, we analyzed both baseline levels and changes in response to treatment with fenofibrate. For the markers that were significantly associated with fenofibrate response, we fit additional models evaluating potential epistatic interactions. All models were adjusted for age, sex, and study center as fixed effects, and pedigree as a random effect. Statistically significant associations were observed between the rs964184 polymorphism near APOA1 (P-value≤0.0001) and fenofibrate response for HDL and triglycerides. The association was replicated in the Pharmacogenetics of Hypertriglyceridemia in Hispanics study (HyperTG, n = 267). Suggestive associations with fenofibrate response were observed for markers in or near PDE3A, MOSC1, FLJ36070, CETP, the APOE-APOC1-APOC4-APOC2, and CILP2. Finally, we present strong evidence for epistasis (P-value for interaction =  0.0006 in GOLDN, 0.05 in HyperTG) between rs10401969 near CILP2 and rs4420638 in the APOE-APOC1-APOC4-APOC2 cluster with total cholesterol response to fenofibrate. In conclusion, we present evidence linking several novel and biologically relevant genetic polymorphisms to lipid lowering drug response, as well as suggesting novel gene-gene interactions in fenofibrate pharmacogenetics.  相似文献   
355.
Parkinson's Disease (PD) is a debilitating motor function disorder due primarily to a loss of midbrain dopaminergic neurons and a subsequent reduction in dopaminergic innervation of the striatum. Several attempts have been made to generate dopaminergic neurons from progenitor cell populations in vitro for potential use in cell replacement therapy for PD. However, expanding cells from fetal brain with retained potential for dopaminergic differentiation has proven to be difficult. In this study, we sought to generate mesencephalic dopaminergic (mesDA) neurons from an expanded population of fetal mouse ventral midbrain (VM) progenitors through the use of retroviral gene delivery. We over-expressed Ngn2 and Nurr1, two genes present in the ventral midbrain and important for normal development of mesDA neurons, in multi-passaged neurosphere-expanded midbrain progenitors. We show that over-expression of Ngn2 in these progenitors results in increased neuronal differentiation but does not promote mesDA formation. We also show that over-expression of Nurr1 alone is sufficient to generate tyrosine hydroxylase (TH) expressing cells with an immature morphology, however the cells do not express any additional markers of mesDA neurons. Over-expression of Nurr1 and Ngn2 in combination generates morphologically mature TH-expressing neurons that also express additional mesencephalic markers.  相似文献   
356.
Immunoreceptor tyrosine-based activation motifs (ITAMs) are signaling domains located within the cytoplasmic tails of many transmembrane receptors and associated adaptor proteins that mediate immune cell activation. ITAMs also have been identified in the cytoplasmic tails of some enveloped virus glycoproteins. Here, we identified ITAM sequences in three mammalian reovirus proteins: μ2, σ2, and λ2. We demonstrate for the first time that μ2 is phosphorylated, contains a functional ITAM, and activates NF-κB. Specifically, μ2 and μNS recruit the ITAM-signaling intermediate Syk to cytoplasmic viral factories and this recruitment requires the μ2 ITAM. Moreover, both the μ2 ITAM and Syk are required for maximal μ2 activation of NF-κB. A mutant virus lacking the μ2 ITAM activates NF-κB less efficiently and induces lower levels of the downstream antiviral cytokine beta interferon (IFN-β) than does wild-type virus despite similar replication. Notably, the consequences of these μ2 ITAM effects are cell type specific. In fibroblasts where NF-κB is required for reovirus-induced apoptosis, the μ2 ITAM is advantageous for viral spread and enhances viral fitness. Conversely, in cardiac myocytes where the IFN response is critical for antiviral protection and NF-κB is not required for apoptosis, the μ2 ITAM stimulates cellular defense mechanisms and diminishes viral fitness. Together, these results suggest that the cell type-specific effect of the μ2 ITAM on viral spread reflects the cell type-specific effects of NF-κB and IFN-β. This first demonstration of a functional ITAM in a nonenveloped virus presents a new mechanism for viral ITAM-mediated signaling with likely organ-specific consequences in the host.  相似文献   
357.
358.
359.
Cancer is the leading cause of morbidity and mortality worldwide. Some studies have shown that high heat kills cancer cells. Irisin is a protein involved in heat production by converting white into brown adipose tissue, but there is no information about how its expression changes in cancerous tissues. We used irisin antibody immunohistochemistry to investigate changes in irisin expression in gastrointestinal cancers compared to normal tissues. Irisin was found in human brain neuroglial cells, esophageal epithelial cells, esophageal epidermoid carcinoma, esophageal adenocarcinoma and neuroendocrine esophageal carcinoma, gastric glands, gastric adenosquamous carcinoma, gastric neuroendocrine carcinoma, gastric signet ring cell carcinoma, neutrophils in vascular tissues, intestinal glands of colon, colon adenocarcinoma, mucinous colon adenocarcinoma, hepatocytes, hepatocellular carcinoma, islets of Langerhans, exocrine pancreas, acinar cells and interlobular and interlobular ducts of normal pancreas, pancreatic ductal adenocarcinoma, and intra- and interlobular ducts of cancerous pancreatic tissue. Histoscores (area × intensity) indicated that irisin was increased significantly in gastrointestinal cancer tissues, except liver cancers. Our findings suggest that the relation of irisin to cancer warrants further investigation.  相似文献   
360.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号