全文获取类型
收费全文 | 410篇 |
免费 | 16篇 |
专业分类
426篇 |
出版年
2021年 | 8篇 |
2020年 | 3篇 |
2018年 | 4篇 |
2016年 | 6篇 |
2015年 | 11篇 |
2014年 | 12篇 |
2013年 | 12篇 |
2012年 | 25篇 |
2011年 | 29篇 |
2010年 | 18篇 |
2009年 | 18篇 |
2008年 | 23篇 |
2007年 | 29篇 |
2006年 | 20篇 |
2005年 | 10篇 |
2004年 | 19篇 |
2003年 | 22篇 |
2002年 | 16篇 |
2001年 | 6篇 |
2000年 | 6篇 |
1999年 | 5篇 |
1998年 | 5篇 |
1997年 | 6篇 |
1994年 | 4篇 |
1993年 | 9篇 |
1992年 | 3篇 |
1990年 | 3篇 |
1987年 | 3篇 |
1986年 | 4篇 |
1979年 | 3篇 |
1977年 | 5篇 |
1974年 | 3篇 |
1972年 | 2篇 |
1971年 | 3篇 |
1968年 | 2篇 |
1965年 | 5篇 |
1963年 | 2篇 |
1962年 | 2篇 |
1961年 | 3篇 |
1960年 | 3篇 |
1959年 | 2篇 |
1957年 | 4篇 |
1956年 | 3篇 |
1954年 | 2篇 |
1953年 | 3篇 |
1950年 | 3篇 |
1949年 | 2篇 |
1947年 | 2篇 |
1941年 | 2篇 |
1940年 | 2篇 |
排序方式: 共有426条查询结果,搜索用时 15 毫秒
31.
Panneels V Schüssler U Costagliola S Sinning I 《Biochemical and biophysical research communications》2003,300(1):65-74
ATP/ADP carriers (AACs) are essential to the cell as they exchange ATP produced in mitochondria for cytosolic ADP. Monoclonal antibodies against the isoform 2 of Saccharomyces cerevisiae AAC (ScAAC2) were used to probe the accessibility of the matrix loops 1 and 3 depending on the environment of the carrier. In mitochondrial membranes ScAAC2 was not recognized, whereas in dodecylmaltoside the antibodies bound to the carrier, suggesting that the epitopes are hidden in the native environment. Exposure of the epitopes by detergents was reversed by reconstitution of the carrier in phospholipids or by exchanging with detergents having a choline or a trimethylammonium head group. Circular dichroism spectroscopy on peptides representing the C-terminal regions of all three matrix loops showed that only phosphocholine detergents induced a structural reorganization. Since in addition phosphatidylcholine was found to be tightly associated with the purified carrier, the matrix loop regions are likely to be associated to the membrane by phosphatidylcholine. 相似文献
32.
Sebastian Falk Stephanie Ravaud Joachim Koch Irmgard Sinning 《The Journal of biological chemistry》2010,285(8):5954-5962
The YidC/Oxa1/Alb3 family of membrane proteins controls the insertion and assembly of membrane proteins in bacteria, mitochondria, and chloroplasts. Here we describe the molecular mechanisms underlying the interaction of Alb3 with the chloroplast signal recognition particle (cpSRP). The Alb3 C-terminal domain (A3CT) is intrinsically disordered and recruits cpSRP to the thylakoid membrane by a coupled binding and folding mechanism. Two conserved, positively charged motifs reminiscent of chromodomain interaction motifs in histone tails are identified in A3CT that are essential for the Alb3-cpSRP43 interaction. They are absent in the C-terminal domain of Alb4, which therefore does not interact with cpSRP43. Chromodomain 2 in cpSRP43 appears as a central binding platform that can interact simultaneously with A3CT and cpSRP54. The observed negative cooperativity of the two binding events provides the first insights into cargo release at the thylakoid membrane. Taken together, our data show how Alb3 participates in cpSRP-dependent membrane targeting, and our data provide a molecular explanation why Alb4 cannot compensate for the loss of Alb3. Oxa1 and YidC utilize their positively charged, C-terminal domains for ribosome interaction in co-translational targeting. Alb3 is adapted for the chloroplast-specific Alb3-cpSRP43 interaction in post-translational targeting by extending the spectrum of chromodomain interactions. 相似文献
33.
Continental‐scale macrofungal assemblage patterns correlate with climate,soil carbon and nitrogen deposition 下载免费PDF全文
34.
Emanuela Zaharieva Irmgard U. Haussmann Ulrike Br?uer Matthias Soller 《Molecular and cellular biology》2015,35(18):3104-3115
Neuronally coexpressed ELAV/Hu proteins comprise a family of highly related RNA binding proteins which bind to very similar cognate sequences. How this redundancy is linked to in vivo function and how gene-specific regulation is achieved have not been clear. Analysis of mutants in Drosophila ELAV/Hu family proteins ELAV, FNE, and RBP9 and of genetic interactions among them indicates that they have mostly independent roles in neuronal development and function but have converging roles in the regulation of synaptic plasticity. Conversely, ELAV, FNE, RBP9, and human HuR bind ELAV target RNA in vitro with similar affinities. Likewise, all can regulate alternative splicing of ELAV target genes in nonneuronal wing disc cells and substitute for ELAV in eye development upon artificially increased expression; they can also substantially restore ELAV''s biological functions when expressed under the control of the elav gene. Furthermore, ELAV-related Sex-lethal can regulate ELAV targets, and ELAV/Hu proteins can interfere with sexual differentiation. An ancient relationship to Sex-lethal is revealed by gonadal expression of RBP9, providing a maternal fail-safe for dosage compensation. Our results indicate that highly related ELAV/Hu RNA binding proteins select targets for mRNA processing through alteration of their expression levels and subcellular localization but only minimally by altered RNA binding specificity. 相似文献
35.
Irmgard Ziegler 《Planta》1977,135(1):25-32
35SO2, 35SO
3
2-
, and 35SO
4
2-
, respectively, were applied to leaves of Spinacia oleracea L. for 60 min in the light. Thereafter, the specific activity was determined in the organelles separated by means of sucrose density gradient centrifugation. In mitochondria and peroxisomes, the specific activity was equally distributed in their protein moieties. After application of 35SO2 or 35SO
3
2-
, the chloroplast lamellae are characterized by elevated specific activity, which is not found after application of 35SO
4
2-
. Chloroplast stroma shows a low specific incorporation rate after application of either compound, which may be due to the low turnover rate of Fraction I protein. 相似文献
36.
Fernández-Montalván A Assfalg-Machleidt I Pfeiler D Fritz H Jochum M Machleidt W 《Biological chemistry》2006,387(5):617-627
Mu- and m-calpain are cysteine proteases requiring micro- and millimolar Ca2+ concentrations for their activation in vitro. Among other mechanisms, interaction of calpains with membrane phospholipids has been proposed to facilitate their activation by nanomolar [Ca2+] in living cells. Here the interaction of non-autolysing, C115A active-site mutated heterodimeric human mu-calpain with phospholipid bilayers was studied in vitro using protein-to-lipid fluorescence resonance energy transfer and surface plasmon resonance. Binding to liposomes was Ca2+-dependent, but not selective for specific phospholipid head groups. [Ca2+]0.5 for association with lipid bilayers was not lower than that required for the exposure of hydrophobic surface (detected by TNS fluorescence) or for enzyme activity in the absence of lipids. Deletion of domain V reduced the lipid affinity of the isolated small subunit (600-fold) and of the heterodimer (10- to 15-fold), thus confirming the proposed role of domain V for membrane binding. Unexpectedly, mutations in the acidic loop of the 'C2-like' domain III, a putative Ca2+ and phospholipid-binding site, did not affect lipid affinity. Taken together, these results support the hypothesis that in vitro membrane binding of mu-calpain is due to the exposed hydrophobic surface of the active conformation and does not reduce the Ca2+ requirement for activation. 相似文献
37.
Sandro Huenchuguala Patricia Mu?oz Patricio Zavala Mónica Villa Carlos Cuevas Ulises Ahumada Rebecca Graumann Beston F Nore Eduardo Couve Bengt Mannervik Irmgard Paris Juan Segura-Aguilar 《Autophagy》2014,10(4):618-630
U373MG cells constitutively express glutathione S-transferase mu 2 (GSTM2) and exhibit 3H-dopamine uptake, which is inhibited by 2 µM of nomifensine and 15 µM of estradiol. We generated a stable cell line (U373MGsiGST6) expressing an siRNA against GSTM2 that resulted in low GSTM2 expression (26% of wild-type U373MG cells). A significant increase in cell death was observed when U373MGsiGST6 cells were incubated with 50 µM purified aminochrome (18-fold increase) compared with wild-type cells. The incubation of U373MGsiGST6 cells with 75 µM aminochrome resulted in the formation of autophagic vacuoles containing undigested cellular components, as determined using transmission electron microscopy. A significant increase in autophagosomes was determined by measuring endogenous LC3-II, a significant decrease in cell death was observed in the presence of bafilomycin A1, and a significant increase in cell death was observed in the presence of trehalose. A significant increase in LAMP2 immunostaining was observed, a significant decrease in bright red fluorescence of lysosomes with acridine orange was observed, and bafilomycin A1 pretreatment reduced the loss of lysosome acidity. A significant increase in cell death was observed in the presence of lysosomal protease inhibitors. Aggregation of TUBA/α-tubulin (tubulin, α) and SQSTM1 protein accumulation were also observed. Moreover, a significant increase in the number of lipids droplets was observed compared with U373MG cells with normal expression of GSTM2. These results support the notion that GSTM2 is a protective enzyme against aminochrome toxicity in astrocytes and that aminochrome cell death in U373MGsiGST6 cells involves autophagic-lysosomal dysfunction. 相似文献
38.
Hahnen E Eyüpoglu IY Brichta L Haastert K Tränkle C Siebzehnrübl FA Riessland M Hölker I Claus P Romstöck J Buslei R Wirth B Blümcke I 《Journal of neurochemistry》2006,98(1):193-202
Among a panel of histone deacetylase (HDAC) inhibitors investigated, suberoylanilide hydroxamic acid (SAHA) evolved as a potent and non-toxic candidate drug for the treatment of spinal muscular atrophy (SMA), an alpha-motoneurone disorder caused by insufficient survival motor neuron (SMN) protein levels. SAHA increased SMN levels at low micromolar concentrations in several neuroectodermal tissues, including rat hippocampal brain slices and motoneurone-rich cell fractions, and its therapeutic capacity was confirmed using a novel human brain slice culture assay. SAHA activated survival motor neuron gene 2 (SMN2), the target gene for SMA therapy, and inhibited HDACs at submicromolar doses, providing evidence that SAHA is more efficient than the HDAC inhibitor valproic acid, which is under clinical investigation for SMA treatment. In contrast to SAHA, the compounds m-Carboxycinnamic acid bis-Hydroxamide, suberoyl bishydroxamic acid and M344 displayed unfavourable toxicity profiles, whereas MS-275 failed to increase SMN levels. Clinical trials have revealed that SAHA, which is under investigation for cancer treatment, has a good oral bioavailability and is well tolerated, allowing in vivo concentrations shown to increase SMN levels to be achieved. Because SAHA crosses the blood-brain barrier, oral administration may allow deceleration of progressive alpha-motoneurone degeneration by epigenetic SMN2 gene activation. 相似文献
39.
The structure of the regulatory domain of the adenylyl cyclase Rv1264 from Mycobacterium tuberculosis with bound oleic acid 总被引:1,自引:0,他引:1
Findeisen F Linder JU Schultz A Schultz JE Brügger B Wieland F Sinning I Tews I 《Journal of molecular biology》2007,369(5):1282-1295
The universal secondary messenger cAMP is produced by adenylyl cyclases (ACs). Most bacterial and all eukaryotic ACs belong to class III of six divergent classes. A class III characteristic is formation of the catalytic pocket at a dimer interface and the presence of additional regulatory domains. Mycobacterium tuberculosis possesses 15 class III ACs, including Rv1264, which is activated at acidic pH due to pH-dependent structural transitions of the Rv1264 dimer. It has been shown by X-ray crystallography that the N-terminal regulatory and C-terminal catalytic domains of Rv1264 interact in completely different ways in the active and inhibited states. Here, we report an in-depth structural and functional analysis of the regulatory domain of Rv1264. The 1.6 A resolution crystal structure shows the protein in a tight, disk-shaped dimer, formed around a helical bundle, and involving a protein chain crossover. To understand pH regulation, we determined structures at acidic and basic pH values and employed structure-based mutagenesis in the holoenzyme to elucidate regulation using an AC activity assay. It has been shown that regulatory and catalytic domains must be linked in a single protein chain. The new studies demonstrate that the length of the linker segment is decisive for regulation. Several amino acids on the surface of the regulatory domain, when exchanged, altered the pH-dependence of AC activity. However, these residues are not conserved amongst a number of related ACs. The closely related mycobacterial Rv2212, but not Rv1264, is strongly activated by the addition of fatty acids. The structure resolved the presence of a deeply embedded fatty acid, characterised as oleic acid by mass spectrometry, which may serve as a hinge. From these data, we conclude that the regulatory domain is a structural scaffold used for distinct regulatory purposes. 相似文献
40.
Paris I Martinez-Alvarado P Perez-Pastene C Vieira MN Olea-Azar C Raisman-Vozari R Cardenas S Graumann R Caviedes P Segura-Aguilar J 《Journal of neurochemistry》2005,92(5):1021-1032
The role of dopamine in iron uptake into catecholaminergic neurons, and dopamine oxidation to aminochrome and its one-electron reduction in iron-mediated neurotoxicity, was studied in RCSN-3 cells, which express both tyrosine hydroxylase and monoamine transporters. The mean +/- SD uptake of 100 microm 59FeCl3 in RCSN-3 cells was 25 +/- 4 pmol per min per mg, which increased to 28 +/- 8 pmol per min per mg when complexed with dopamine (Fe(III)-dopamine). This uptake was inhibited by 2 microm nomifensine (43%p < 0.05), 100 microm imipramine (62%p < 0.01), 30 microm reboxetine (71%p < 0.01) and 2 mm dopamine (84%p < 0.01). The uptake of 59Fe-dopamine complex was Na+, Cl- and temperature dependent. No toxic effects in RCSN-3 cells were observed when the cells were incubated with 100 microm FeCl3 alone or complexed with dopamine. However, 100 microm Fe(III)-dopamine in the presence of 100 microm dicoumarol, an inhibitor of DT-diaphorase, induced toxicity (44% cell death; p < 0.001), which was inhibited by 2 microm nomifensine, 30 microm reboxetine and 2 mm norepinephrine. The neuroprotective action of norepinephrine can be explained by (1) its ability to form complexes with Fe3+, (2) the uptake of Fe-norepinephrine complex via the norepinephrine transporter and (3) lack of toxicity of the Fe-norepinephrine complex even when DT-diaphorase is inhibited. These results support the proposed neuroprotective role of DT-diaphorase and norepinephrine. 相似文献