首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2117篇
  免费   179篇
  国内免费   2篇
  2023年   12篇
  2022年   33篇
  2021年   45篇
  2020年   25篇
  2019年   43篇
  2018年   49篇
  2017年   30篇
  2016年   78篇
  2015年   95篇
  2014年   115篇
  2013年   106篇
  2012年   168篇
  2011年   170篇
  2010年   89篇
  2009年   89篇
  2008年   128篇
  2007年   143篇
  2006年   118篇
  2005年   99篇
  2004年   96篇
  2003年   86篇
  2002年   69篇
  2001年   29篇
  2000年   25篇
  1999年   25篇
  1998年   22篇
  1997年   18篇
  1996年   11篇
  1995年   8篇
  1994年   9篇
  1993年   16篇
  1992年   17篇
  1991年   11篇
  1990年   9篇
  1989年   7篇
  1988年   7篇
  1987年   6篇
  1986年   6篇
  1985年   9篇
  1984年   7篇
  1983年   9篇
  1982年   12篇
  1981年   8篇
  1979年   8篇
  1977年   8篇
  1975年   6篇
  1974年   6篇
  1973年   7篇
  1971年   7篇
  1965年   8篇
排序方式: 共有2298条查询结果,搜索用时 828 毫秒
111.
Using confocal microscopy on immunofluorescence-stained cells, we have investigated the response of CDKN1A (p21), one of the key proteins involved in the DNA damage response pathway, after irradiation with accelerated lead or chromium ions. Each traversal of an accelerated ion leads to the formation of a single, bright focus of the CDKN1A protein in the nuclei of human fibroblasts within 2 min after irradiation at 4 degrees C. This immediate, localized CDKN1A response is specific for particle irradiation with a high linear energy transfer (LET), whereas X irradiation, after a period of induction, yields a diffusely spread pattern, in line with the differences in the microscopic dose deposition pattern of both radiation types. The particle-induced CDKN1A foci persist for several hours until they become diffuse and vanish. These findings suggest that CDKN1A accumulates at the sites of primary DNA damage, possibly mediated by the interaction with proteins involved in DNA repair. Here, for the first time, an immediate biological response confined to the radial extension of low-energy particle tracks ( approximately 1 micrometer) is directly visualized and correlated to ion traversals. This indicates that particle irradiation represents an ideal tool to study the processing of biological damage induced in defined subnuclear regions.  相似文献   
112.
In Saccharomyces cerevisiae, transfer of N-linked oligosaccharides is immediately followed by trimming of ER-localized glycosidases. We analyzed the influence of specific oligosaccharide structures for degradation of misfolded carboxypeptidase Y (CPY). By studying the trimming reactions in vivo, we found that removal of the terminal α1,2 glucose and the first α1,3 glucose by glucosidase I and glucosidase II respectively, occurred rapidly, whereas mannose cleavage by mannosidase I was slow. Transport and maturation of correctly folded CPY was not dependent on oligosaccharide structure. However, degradation of misfolded CPY was dependent on specific trimming steps. Degradation of misfolded CPY with N-linked oligosaccharides containing glucose residues was less efficient compared with misfolded CPY bearing the correctly trimmed Man8GlcNAc2 oligosaccharide. Reduced rate of degradation was mainly observed for mis- folded CPY bearing Man6GlcNAc2, Man7GlcNAc2 and Man9GlcNAc2 oligosaccharides, whereas Man8GlcNAc2 and, to a lesser extent, Man5GlcNAc2 oligosaccharides supported degradation. These results suggest a role for the Man8GlcNAc2 oligosaccharide in the degradation process. They may indicate the presence of a Man8GlcNAc2-binding lectin involved in targeting of misfolded glycoproteins to degradation in S. cerevisiae.  相似文献   
113.
Chloride channels in the luminal membrane of exocrine gland acini from frog skin (Rana esculenta) constituted a single homogeneous population. In cell-attached patches, channels activated upon exposure to isoproterenol, forskolin, or dibutyryl-cAMP and isobutyl-1-methyl-xanthine rectified in the outward direction with a conductance of 10.0 ± 0.4 pS for outgoing currents. Channels in stimulated cells reversed at 0 mV applied potential, whereas channels in unstimulated cells reversed at depolarized potentials (28.1 ± 6.7 mV), indicating that Cl was above electrochemical equilibrium in unstimulated, but not in stimulated, cells. In excised inside-out patches with 25 mM Cl on the inside, activity of small (8-pS) linear Cl-selective channels was dependent upon bath ATP (1.5 mM) and increased upon exposure to cAMP-dependent protein kinase. The channels displayed a single substate, located just below 2/3 of the full channel amplitude. Halide selectivity was identified as PBr > PI > PCl from the Goldman equation; however, the conductance sequence when either halide was permeating the channel was GCl > GBr >> GI. In inside-out patches, the channels were blocked reversibly by 5-nitro-2-(3-phenylpropylamino)benzoic acid, glibenclamide, and diphenylamine-2-carboxylic acid, whereas 4,4-diisothiocyanatostilbene-2,2-disulfonic acid blocked channel activity completely and irreversibly. Single-channel kinetics revealed one open state (mean lifetime = 158 ± 72 ms) and two closed states (lifetimes: 12 ± 4 and 224 ± 31 ms, respectively). Power density spectra had a double-Lorentzian form with corner frequencies 0.85 ± 0.11 and 27.9 ± 2.9 Hz, respectively. These channels are considered homologous to the cystic fibrosis transmembrane conductance regulator Cl channel, which has been localized to the submucosal skin glands in Xenopus by immunohistochemistry (Engelhardt, J.F., S.S. Smith, E. Allen, J.R. Yankaskas, D.C. Dawson, and J.M. Wilson. 1994. Am. J. Physiol. 267: C491–C500) and, when stimulated by cAMP-dependent phosphorylation, are suggested to function in chloride secretion.  相似文献   
114.
The seasonal variations in community structure and cell morphology of pelagic procaryotes from a high mountain lake (Gossenköllesee, Austria) were studied by in situ hybridization with rRNA-targeted fluorescently labeled oligonucleotide probes (FISH) and image-analyzed microscopy. Compositional changes and biomass fluctuations within the assemblage were observed both in summer and beneath the winter ice cover and are discussed in the context of physicochemical and biotic parameters. Proteobacteria of the beta subclass (beta-proteobacteria) formed a dominant fraction of the bacterioplankton (annual mean, 24% of the total counts), whereas alpha-proteobacteria were of similar relative importance only during spring (mean, 11%). Bacteria of the Cytophaga-Flavobacterium cluster, although less abundant, constituted the largest fraction of the filamentous morphotypes during most of the year, thus contributing significantly to the total microbial biomass. Successive peaks of threadlike and rod-shaped archaea were observed during autumn thermal mixing and the period of ice cover formation, respectively. A set of oligonucleotide probes targeted to single phylotypes was constructed from 16S rRNA-encoding gene clone sequences. Three distinct populations of uncultivated microbes, affiliated with the alpha- and beta-proteobacteria, were subsequently monitored by FISH. About one-quarter of all of the beta-proteobacteria (range, 6 to 53%) could be assigned to only two phylotypes. The bacterial populations studied were annually recurrent, seasonally variable, and vertically stratified, except during the periods of lake overturn. Their variability clearly exceeded the fluctuations of the total microbial assemblage, suggesting that the apparent stability of total bacterioplankton abundances may mask highly dynamic community fluctuations.Until recently, microbial ecologist studying aquatic bacteria faced a basic dilemma: they could either measure the abundance, biomass, growth rates, activity, etc. of the “average” bacterium under in situ conditions (e.g., see reference 13), ignoring the phylogenetic and physiological diversity of microbial communities, or they could isolate and ecophysiologically characterize individual bacterial strains (e.g., see reference 36) but were then not able to tell if these microorganisms were also common in the environment. Consequently, little knowledge has been gathered about the spatial and temporal abundance fluctuations of defined phylogenetic groups and of individual bacterial species in natural habitats. Molecular biological techniques used to identify microbes in environmental samples have recently provided new tools to study bacterioplankton biodiversity (e.g., see references 1, 9, 14, 15, and 19) and the in situ abundances of bacteria and archaea that could not be adequately distinguished before (2, 4, 5, 25). Microbiologists are now in a position to potentially elucidate the biogeography (24), population dynamics, and successions (28) not only of a few morphologically conspicuous microbes but of a large number of species, most of which might still be uncharacterized.Fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes selectively visualizes bacterial cells with defined phylogenetic affiliations (3, 5). Based on a rapidly growing set of 16S (and, to a lesser extend, 23S) rRNA sequence data, it is probably the phylogenetically most sophisticated (22) approach for whole-cell in situ identification. On the other hand, FISH of plankton samples can be performed with minimal laboratory requirements (16), and evaluation relies on epifluorescence microscopy, which is a standard technique of aquatic microbial ecologists, e.g., for counting (30) and sizing (33) of picoplankton. In contrast to other identification approaches, FISH largely conserves the gestalt of the targeted microorganisms, i.e., their morphologies, cell sizes (26, 34), and cellular rRNA content (7, 32). So, despite the limitations of the method (as discussed in reference 5), its potential for the identification and cytometric analysis of planktonic microbes is just about to be recognized.Recent investigations have reported that various freshwater microbial communities are dominated by bacteria which are phylogenetically affiliated with the alpha and beta subclasses of the class Proteobacteria (alpha- and beta-proteobacteria, respectively) and with members of the Cytophaga-Flavobacterium cluster (2, 6, 16, 19). These observations were based on single or short-term sampling schemes. The instantaneous community composition of the bacterioplankton, however, may not be representative for different seasons, and the typical ranges of annual community variability remain to be established.The size distribution of planktonic bacteria, and particularly the appearance of filamentous cells, has come into the focus of aquatic microbial ecology in the context of studies of predator-prey interactions. It has been shown both in the laboratory (18, 37) and in field experiments (20) that the filamentous morphotype is a phenotypic adaptation of some microbes to protistan grazing, but there are probably numerous other causes for bacteria to elongate far beyond their typical sizes (e.g., see reference 23). Threadlike bacteria have been observed throughout the year in the plankton of a hypertrophic lake (41) but were also found in midwinter in an oligotropic alpine lake (31).In earlier studies, we demonstrated FISH to be an appropriate tool for the monitoring of spatial (2) and short-term temporal (26) dynamics of different phylogenetic groups of the planktonic microbial community in a high mountain lake. Here we report on the seasonal and vertical abundance distributions of pelagic members of Bacteria and Archaea in Gossenköllesee and analysis of the community structure at different levels of taxonomic resolution. We applied published domain- and group-specific oligonucleotide probes (5) but also used the sequence information from a 16S rRNA-encoding gene (rDNA) library obtained from Gossenköllesee bacterioplankton 1 year earlier to construct specific probes targeted at individual bacterial populations. Particular attention was paid to the changes in abundance and taxonomic composition of the filamentous bacterial morphotypes which were recognized as a permanently important fraction of the planktonic procaryotes in Gossenköllesee. Additionally, we monitored the seasonal changes in the biomass size distributions of the nonfilamentous fraction of the pelagic microbial community.  相似文献   
115.
116.
The excited-state dynamics of oligomeric phenyleneethynylenes (OPEs) of various length and substitution has been investigated by femtosecond time-resolved spectroscopy. The fluorescence lifetime of the OPEs decreases with the number of phenyleneethynylene units up to about 9. This effect is due to an increase of the oscillator strength for the S(1)-S(0) transition. Dynamic features occurring within a few tens of picoseconds and ascribed to structural relaxation directly after population of the S(1) state can be observed in non-viscous solvents. The effect of torsional disorder on the fluorescence intensity is shown to depend strongly on the nature of the substituent on the phenyl groups. All these effects are qualitatively discussed with a simple exciton model.  相似文献   
117.
Irmgard Jäger-Zürn 《Flora》2009,204(5):358-370
The study of the ramification pattern of Apinagia riedelii results in a new concept of the architecture of this species, with general implications to members of subfamily Podostemoideae with dithecous leaves. The presence of a subtending leaf below the floriferous shoot proves axillary branching also for species with dithecous leaves. Previous opinions of an unusual ramification mode by subfoliar or non-axillary branching or stem bifurcation in combination with dithecous leaves hitherto pleaded for Podostemoideae is refuted. Moreover, the view of the so-called dithecous leaves with one sheath (theca) at the ventral and one at the dorsal side of the leaf, previously regarded as initially connected with branching, has to be changed. The dithecous leaf arises from the branch and not from the mother shoot axis – as previously believed – and represents the addorsed hypsophyll, i.e., the first leaf (prophyll) of the floriferous branch. This finding leads to the conclusion that the lower sheath of the dithecous leaf is the ventral (not dorsal) sheath pointing to the branch and surrounding its flower bud with a ligule or an ochrea and a hood upon the bud. In this way, the branch and its flower bud become seemingly sunk in the leaf base. At the fusion of leaf basis and shoot results this enigmatic common tissue. The wings of the dorsal (upper) sheath of the dithecous leaf point to the mother shoot axis of the branch. Successive floriferous branches along the main stem disclose the shoot axis of A. riedelii as a monopodium (not sympodium) that develops an anthocladial (foliated) inflorescence in the form of a botrys or a compound botrys, respectively. Since it is generally difficult to define cymose or racemose inflorescences if subtending leaves are absent – which occur in most other species of subfamily Podostemoideae with dithecous leaves – the nature of these inflorescences is discussed anew. The findings on A. riedelii have consequences on our comprehension of the shoot architecture of Podostemoideae.  相似文献   
118.
Both environmental and host factors influence risk of cutaneous melanoma (CM), and worldwide, the incidence varies depending on constitutional determinants of skin type and pigmentation, latitude, and patterns of sun exposure. We performed genetic analysis of CDKN2A, CDK4, BAP1, MC1R, and MITFp.E318K in Danish high-risk melanoma cases and found CDKN2A germline mutations in 11.3% of CM families with three or more affected individuals, including four previously undescribed mutations. Rare mutations were also seen in CDK4 and BAP1, while MC1R variants were common, occurring at more than twice the frequency compared to Danish controls. The MITF p.E318K variant similarly occurred at an approximately three-fold higher frequency in melanoma cases than controls. To conclude, we propose that mutation screening of CDKN2A and CDK4 in Denmark should predominantly be performed in families with at least 3 cases of CM. In addition, we recommend that testing of BAP1 should not be conducted routinely in CM families but should be reserved for families with CM and uveal melanoma, or mesothelioma.  相似文献   
119.
Reactive oxygen species (ROS) primarily produced via NADPH oxidase play an important role for killing microorganisms in neutrophils. In this study we examined if ROS production in Human promyelocytic leukemia cells (HL60) differentiated into neutrophil-like cells (dHL60) induces ER stress and activates the unfolded protein response (UPR). To cause ROS production cells were treated with PMA or by chronic hyperglycemia. Chronic hyperglycemia failed to induce ROS production and did not cause activation of the UPR in dHL60 cells. PMA, a pharmacologic NADPH oxidase activator, induced ER stress in dHL60 cells as monitored by IRE-1 and PERK pathway activation, and this was independent of calcium signaling. The NADPH oxidase inhibitor, DPI, abolished both ROS production and UPR activation. These results show that ROS produced by NADPH oxidase induces ER stress and suggests a close association between the redox state of the cell and the activation of the UPR in neutrophil-like HL60 cells.  相似文献   
120.
The sex hormone testosterone and the neurotransmitter serotonin exert opposite effects on several aspects of behavior including territorial aggression. It is however not settled if testosterone exerts its pro-aggressive effects by reducing serotonin transmission and/or if the anti-aggressive effect of serotonin requires the presence of the androgen. Using the resident intruder test, we now show that administration of the serotonin synthesis inhibitor para-chlorophenylalanine (300 mg/kg x 3 days) increases the total time of attack as well as the percentage amount of social behavior spent on attack but not that spent on threat – i.e. that it induces a pattern of unrestricted, maladaptive aggression – in gonadectomized C57Bl/6 male mice receiving testosterone replacement; in contrast, it failed to reinstate aggression in those not given testosterone. Whereas these results suggest the pro-aggressive effect of testosterone to be independent of serotonin, and not caused by an inhibition of serotonergic activity, the pCPA-induced induction of maladaptive aggression appears to require the presence of the hormone. In line with these findings, pCPA enhanced the total time of attack as well the relative time spent on attacks but not threats also in wild-type gonadally intact male C57Bl/6 mice, but failed to reinstate aggression in mice rendered hypo-aggressive by early knock-out of androgen receptors in the brain (ARNesDel mice). We conclude that androgenic deficiency does not dampen aggression by unleashing an anti-aggressive serotonergic influence; instead serotonin seems to modulate aggressive behavior by exerting a parallel-coupled inhibitory role on androgen-driven aggression, which is irrelevant in the absence of the hormone, and the arresting of which leads to enhanced maladaptive aggression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号