首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   740篇
  免费   53篇
  2022年   5篇
  2021年   16篇
  2020年   9篇
  2019年   9篇
  2018年   12篇
  2017年   13篇
  2016年   17篇
  2015年   31篇
  2014年   30篇
  2013年   44篇
  2012年   63篇
  2011年   51篇
  2010年   29篇
  2009年   34篇
  2008年   50篇
  2007年   50篇
  2006年   38篇
  2005年   29篇
  2004年   34篇
  2003年   48篇
  2002年   30篇
  2001年   8篇
  2000年   4篇
  1999年   11篇
  1998年   11篇
  1997年   5篇
  1996年   6篇
  1995年   10篇
  1994年   4篇
  1993年   6篇
  1992年   6篇
  1990年   6篇
  1989年   4篇
  1988年   3篇
  1987年   6篇
  1986年   5篇
  1985年   5篇
  1984年   6篇
  1983年   8篇
  1982年   4篇
  1981年   7篇
  1974年   2篇
  1973年   2篇
  1958年   1篇
  1957年   1篇
  1948年   1篇
  1936年   2篇
  1933年   1篇
  1930年   1篇
  1924年   1篇
排序方式: 共有793条查询结果,搜索用时 109 毫秒
21.
Maintenance of a high degree of biodiversity in homogeneous environments is poorly understood. A complex cheese starter culture with a long history of use was characterized as a model system to study simple microbial communities. Eight distinct genetic lineages were identified, encompassing two species: Lactococcus lactis and Leuconostoc mesenteroides. The genetic lineages were found to be collections of strains with variable plasmid content and phage sensitivities. Kill-the-winner hypothesis explaining the suppression of the fittest strains by density-dependent phage predation was operational at the strain level. This prevents the eradication of entire genetic lineages from the community during propagation regimes (back-slopping), stabilizing the genetic heterogeneity in the starter culture against environmental uncertainty.  相似文献   
22.
Tuberculosis is an ongoing threat to global health, especially with the emergence of multi drug-resistant (MDR) and extremely drug-resistant strains that are motivating the search for new treatment strategies. One potential strategy is immunotherapy using Innate Defence Regulator (IDR) peptides that selectively modulate innate immunity, enhancing chemokine induction and cell recruitment while suppressing potentially harmful inflammatory responses. IDR peptides possess only modest antimicrobial activity but have profound immunomodulatory functions that appear to be influential in resolving animal model infections. The IDR peptides HH2, 1018 and 1002 were tested for their activity against two M. tuberculosis strains, one drug-sensitive and the other MDR in both in vitro and in vivo models. All peptides showed no cytotoxic activity and only modest direct antimicrobial activity versus M. tuberculosis (MIC of 15–30 µg/ml). Nevertheless peptides HH2 and 1018 reduced bacillary loads in animal models with both the virulent drug susceptible H37Rv strain and an MDR isolate and, especially 1018 led to a considerable reduction in lung inflammation as revealed by decreased pneumonia. These results indicate that IDR peptides have potential as a novel immunotherapy against TB.  相似文献   
23.
A new leucyl aminopeptidase activity has been identified in the fission yeast Schizosaccharomyces pombe. The enzyme, which has been purified and named leucyl aminopeptidase yspII (LAP yspII), had a molecular mass of 320 and 54 kDa by gel filtration and SDS/PAGE, respectively, suggesting a homohexameric structure. The enzyme cleaved synthetic aminoacyl-4-nitroanilides at an optimum of pH 8.5, and preferred leucine and methionine as N-terminal amino acids. A clear dependence on Mn2+ concentration for activity was found, and an apparent association constant of 0.33 mM was calculated for the metal ion. Bestatin behaved as a competitive inhibitor of LAP yspII (K(i) = 0.14 microM), while chelating agents such as chloroquine, EDTA and 1,10-phenanthroline also reduced enzyme activity. A MALDI-MS analysis, followed by sequencing of two of the resulting peptides, showed that LAP yspII undoubtedly corresponds to the putative aminopeptidase C13A11.05 identified in the S. pombe genome project. The protein exhibited nearly 40% sequence identity to fungal and mammalian aminopeptidases belonging to the M17 family of metallopeptidases. Catalytic residues (Lys292 and Arg366), as well as those involved in coordination with the cocatalytic metal ions (Lys280, Asp285, Asp303, Asp362 and Glu364) and those forming the hydrophobic pocket for substrate binding (Met300, Asn360, Ala363, Thr390, Leu391, Ala483 and Met486), were perfectly conserved among all known aminopeptidases. The S. pombe enzyme is predicted to be formed two clearly distinguished domains with a well conserved C-terminal catalytic domain showing a characteristic topology of eight beta-sheets surrounded by alpha-helical segments in the form of a saddle.  相似文献   
24.
Growth hormone (GH) has been previously described as showing distinct evolutionary stories between primates and other mammals. A burst of changes and successive amplification events took place in the primate lineage giving rise to a multigene family in the three Anthropoidea lineages. Polymerase chain reaction (PCR) was used to obtain the genes and the intergenic regions comprising the GH loci of the spider monkey (Ateles geoffroyi), a New-World primate, and of the chimpanzee (Pan troglodytes), an ape. The intergenic sequences of both species were screened by hybridization to detect copies of the Alu family, which have been implicated in the formation of the human GH locus. The GH locus of the spider monkey contains at least six GH-related genes, four of them were cloned. Likewise, five short intergenic sequences of approximately 3 kb were amplified and cloned. On the other hand, in the chimpanzee four new placental lactogen (PL) genes as well as four intergenic regions were amplified. Consequently, in this ape, six genes (two GHs, previously obtained, and four PLs) are clustered, separated by intergenic sequences of different lengths (two short ones of about 5 kb, and at least two long ones between 9 and 13 kb). The presence of Alu sequences within the intergenic regions of both GH loci corroborates the current hypothesis that they acted as a driving force for the locus expansion. GH sequence comparisons reveal that several gene-conversion events might have occurred during the formation of this genome region, which has undergone independent evolution in the three Anthropoidea branches. To establish the GH's evolutionary history may prove to be a difficult task due to these gene-conversion events.  相似文献   
25.
In nonstimulated rabbit gastric glands, acetylsalicylic acid (10-500 microM) and indomethacin (3-300 microM) did not significantly modify the basal rate of acid secretion, whereas diclofenac and piroxicam (10-1,000 microM each) caused a marked and dose-dependent inhibitory effect (EC(50) = 138 and 280 microM, respectively). In gastric glands stimulated by histamine (100 microM), diclofenac also reduced the rate of acid formation in a dose-dependent manner. In contrast, acetylsalicylic acid, indomethacin, and piroxicam exerted a biphasic effect; thus low concentrations (3-100 microM) of these three agents significantly increased the rate of histamine-stimulated acid secretion (10-20% over the corresponding control value) by a cAMP-independent mechanism, whereas higher concentrations reduced the rate of acid formation. With respect to underlying biochemical mechanisms that could mediate inhibitory effects of NSAIDs on gastric acid formation, it was observed that both diclofenac and piroxicam, but not acetylsalicylic acid or indomethacin, decreased the glandular content of ATP, inhibited hydrolytic activity of gastric gland microsomal H(+)-K(+)-ATPase, and reduced the rate of H(+)-K(+)-ATPase-dependent proton transport across microsomal membranes in a dose-dependent manner. Furthermore, diclofenac and piroxicam also significantly increased passive permeability of microsomal membranes to protons. In conclusion, our work shows that diclofenac and piroxicam cause a significant reduction in the rate of basal and histamine-stimulated acid formation in isolated rabbit gastric glands at concentrations that can be attained in the gastric lumen of patients treated with these drugs. Mechanisms involved in these inhibitory effects appear to be multifocal and include different steps of stimulus-secretion coupling.  相似文献   
26.
Rodent incisors are covered by enamel only on their labial side. This asymmetric distribution of enamel is instrumental to making the cutting edge sharp. Enamel matrix is secreted by ameloblasts derived from dental epithelium. Here we show that overexpression of follistatin in the dental epithelium inhibits ameloblast differentiation in transgenic mouse incisors, whereas in follistatin knockout mice, ameloblasts differentiate ectopically on the lingual enamel-free surface. Consistent with this, in wild-type mice, follistatin was continuously expressed in the lingual dental epithelium but downregulated in the labial epithelium. Experiments on cultured tooth explants indicated that follistatin inhibits the ameloblast-inducing activity of BMP4 from the underlying mesenchymal odontoblasts and that follistatin expression is induced by activin from the surrounding dental follicle. Hence, ameloblast differentiation is regulated by antagonistic actions of BMP4 and activin A from two mesenchymal cell layers flanking the dental epithelium, and asymmetrically expressed follistatin regulates the labial-lingual patterning of enamel formation.  相似文献   
27.
The cytoplasmic pyrophosphatase from Rhodobacter sphaeroides was purified and characterized. The enzyme is a homodimer of 64 kDa. The N-terminus was sequenced and used to obtain the complete pyrophosphatase sequence from the preliminary genome sequence of Rba. sphaeroides, showing extensive sequence similarity to family II or class C pyrophosphatases. The enzyme hydrolyzes only Mg-PP(i) and Mn-PP(i) with a K(m) of 0.35 mM for both substrates. It is not activated by free Mg (2+), in contrast to the cytoplasmic pyrophosphatase from Rhodospirillum rubrum, and it is not inhibited by NaF, methylendiphosphate, or imidodiphosphate. This work shows that Rba. sphaeroides and Rhodobacter capsulatus cytoplasmic pyrophosphatases belong to family II, in contrast to Rsp. rubrum, Rhodopseudomonas palustris, Rhodopseudomonas gelatinosa, and Rhodomicrobium vannielii cytoplasmic pyrophosphatases which should be classified as members of family I. This is the first report of family II cytoplasmic pyrophosphatases in photosynthetic bacteria and in a gram-negative organism.  相似文献   
28.
The cytoplasmic pyrophosphatase of the photosynthetic bacterium Rhodospirillum rubrum was purified to electrophoretic homogeneity. The enzyme is a homohexamer of 20-kDa monomers. The gene was cloned and sequenced. Alignment of the deduced 179-amino-acid protein with known bacterial pyrophosphatases revealed conservation of all residues in the active site. Attempts to obtain an insertion mutant of the cytoplasmic pyrophosphatase gene did not yield any cell completely devoid of cytoplasmic pyrophosphatase activity. The mutants obtained showed 50% of the enzymatic activity and grew in twice the generation time of wild-type cells. This suggests that the membrane-bound pyrophosphatase of Rsp. rubrum is not sufficient for a normal growth rate, whereas the cytoplasmic enzyme is essential for growth. The characteristics of the gene and the encoded protein fit those of prokaryotic family I pyrophosphatases.  相似文献   
29.
Sclerosteosis is a progressive sclerosing bone dysplasia. Sclerostin (the SOST gene) was originally identified as the sclerosteosis-causing gene. However, the physiological role of sclerostin remains to be elucidated. Sclerostin was intensely expressed in developing bones of mouse embryos. Punctuated expression of sclerostin was localized on the surfaces of both intramembranously forming skull bones and endochondrally forming long bones. Sclerostin-positive cells were identified as osteoclasts. Recombinant sclerostin protein produced in cultured cells was efficiently secreted as a monomer. We examined effects of sclerostin on the activity of BMP2, BMP4, BMP6, and BMP7 for mouse preosteoblastic MC3T3-E1 cells. Sclerostin inhibited the BMP6 and BMP7 activity but not the BMP2 and BMP4 activity. Sclerostin bound to BMP6 and BMP7 with high affinity but bound to BMP2 and BMP4 with lower affinity. In conclusion, sclerostin is a novel secreted osteoclast-derived BMP antagonist with unique ligand specificity. We suggest that sclerostin negatively regulates the formation of bone by repressing the differentiation and/or function of osteoblasts induced by BMPs. Since sclerostin expression is confined to the bone-resorbing osteoclast, it provides a mechanism whereby bone apposition is inhibited in the vicinity of resorption. Our findings indicate that sclerostin plays an important role in bone remodeling and links bone resorption and bone apposition.  相似文献   
30.
Leukocyte-platelet interaction is important in mediating leukocyte adhesion to a thrombus and leukocyte recruitment to a site of vascular injury. This interaction is mediated at least in part by the beta2-integrin Mac-1 (CD11b/CD18) and its counter-receptor on platelets, glycoprotein Ibalpha (GPIbalpha). High molecular weight kininogen (HK) was previously shown to interact with both GPIbalpha and Mac-1 through its domains 3 and 5, respectively. In this study we investigated the ability of HK to interfere with the leukocyte-platelet interaction. In a purified system, HK binding to GPIbalpha was inhibited by HK domain 3 and the monoclonal antibody (mAb) SZ2, directed against the epitope 269-282 of GPIbalpha, whereas mAb AP1, directed to the region 201-268 of GPIbalpha had no effect. In contrast, mAb AP1 inhibited the Mac-1-GPIbalpha interaction. Binding of GPIbalpha to Mac-1 was enhanced 2-fold by HK. This effect of HK was abrogated in the presence of HK domains 3 or 5 or peptides from the 475-497 region of the carboxyl terminus of domain 5 as well as in the presence of mAb SZ2 but not mAb AP1. Whereas no difference in the affinity of the Mac-1-GPIbalpha interaction was observed in the absence or presence of HK, maximal binding of GPIbalpha to Mac-1 doubled in the presence of HK. Moreover, HK/HKa increased the Mac-1-dependent adhesion of myelomonocytic U937 cells and K562 cells transfected with Mac-1 to immobilized GPIbalpha or to GPIbalpha-transfected Chinese hamster ovary cells. Finally, Mac-1-dependent adhesion of neutrophils to surface-adherent platelets was enhanced by HK. Thus, HK can bridge leukocytes with platelets by interacting via its domain 3 with GPIbalpha and via its domain 5 with Mac-1 thereby augmenting the Mac-1-GPIbalpha interaction. These distinct molecular interactions of HK with leukocytes and platelets contribute to the regulation of the adhesive behavior of vascular cells and provide novel molecular targets for reducing atherothrombotic pathologies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号