首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   350篇
  免费   33篇
  2023年   1篇
  2022年   3篇
  2021年   5篇
  2020年   1篇
  2019年   5篇
  2018年   3篇
  2017年   5篇
  2016年   6篇
  2015年   17篇
  2014年   14篇
  2013年   16篇
  2012年   35篇
  2011年   26篇
  2010年   21篇
  2009年   11篇
  2008年   22篇
  2007年   24篇
  2006年   22篇
  2005年   14篇
  2004年   27篇
  2003年   19篇
  2002年   11篇
  2001年   10篇
  2000年   6篇
  1999年   3篇
  1998年   4篇
  1997年   4篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   4篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1987年   5篇
  1986年   4篇
  1985年   4篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1977年   2篇
  1976年   3篇
  1966年   1篇
排序方式: 共有383条查询结果,搜索用时 31 毫秒
81.
Phylogenies—the evolutionary histories of groups of organisms—play a major role in representing the interrelationships among biological entities. Many methods for reconstructing and studying such phylogenies have been proposed, almost all of which assume that the underlying history of a given set of species can be represented by a binary tree. Although many biological processes can be effectively modeled and summarized in this fashion, others cannot: recombination, hybrid speciation, and horizontal gene transfer result in networks of relationships rather than trees of relationships. In previous works, we formulated a maximum parsimony (MP) criterion for reconstructing and evaluating phylogenetic networks, and demonstrated its quality on biological as well as synthetic data sets. In this paper, we provide further theoretical results as well as a very fast heuristic algorithm for the MP criterion of phylogenetic networks. In particular, we provide a novel combinatorial definition of phylogenetic networks in terms of “forbidden cycles,” and provide detailed hardness and hardness of approximation proofs for the "small” MP problem. We demonstrate the performance of our heuristic in terms of time and accuracy on both biological and synthetic data sets. Finally, we explain the difference between our model and a similar one formulated by Nguyen et al., and describe the implications of this difference on the hardness and approximation results.  相似文献   
82.
83.
Escape into the host cell cytosol following invasion of mammalian cells is a common strategy used by invasive pathogens. This requires membrane rupture of the vesicular or vacuolar compartment formed around the bacteria after uptake into the host cell. The mechanism of pathogen‐induced disassembly of the vacuolar membrane is poorly understood. We established a novel, robust and sensitive fluorescence microscopy method that tracks the precise time point of vacuole rupture upon uptake of Gram‐negative bacteria. This revealed that the enteroinvasive pathogen Shigella flexneri escapes rapidly, in less than 10 min, from the vacuole. Our method demonstrated the recruitment of host factors, such as RhoA, to the bacterial entry site and their continued presence at the point of vacuole rupture. We found a novel host marker for ruptured vacuoles, galectin‐3, which appears instantly in the proximity of bacteria after escape into the cytosol. Furthermore, we show that the Salmonella effector proteins, SifA and PipB2, stabilize the vacuole membrane inhibiting bacterial escape from the vacuole. Our novel approach to track vacuole rupture is ideally suited for high‐content and high‐throughput approaches to identify the molecular and cellular mechanisms of membrane rupture during invasion by pathogens such as viruses, bacteria and parasites.  相似文献   
84.
85.
Human CD56(bright) NK cells accumulate in the maternal decidua during pregnancy and are found in direct contact with fetal trophoblasts. Several mechanisms have been proposed to explain the inability of NK cells to kill the semiallogeneic fetal cells. However, the actual functions of decidual NK (dNK) cells during pregnancy are mostly unknown. Here we show that dNK cells, but not peripheral blood-derived NK subsets, regulate trophoblast invasion both in vitro and in vivo by production of the interleukin-8 and interferon-inducible protein-10 chemokines. Furthermore, dNK cells are potent secretors of an array of angiogenic factors and induce vascular growth in the decidua. Notably, such functions are regulated by specific interactions between dNK-activating and dNK-inhibitory receptors and their ligands, uniquely expressed at the fetal-maternal interface. The overall results support a 'peaceful' model for reproductive immunology, in which elements of innate immunity have been incorporated in a constructive manner to support reproductive tissue development.  相似文献   
86.
Glu-60 of the zinc-dependent Thermoanaerobacter brockii alcohol dehydrogenase (TbADH) is a strictly conserved residue in all members of the alcohol dehydrogenase (ADH) family. Unlike most other ADHs, the crystal structures of TbADH and its analogs, ADH from Clostridium beijerinckii (CbADH), exhibit a unique zinc coordination environment in which this conserved residue is directly coordinated to the catalytic zinc ion in the native form of the enzymes. To explore the role of Glu-60 in TbADH catalysis, we have replaced it by alanine (E60A-TbADH) and aspartate (E60D-TbADH). Steady-state kinetic measurements show that the catalytic efficiency of these mutants is only four- and eightfold, respectively, lower than that of wild-type TbADH. We applied X-ray absorption fine-structure (EXAFS) and near-UV circular dichroism to characterize the local environment around the catalytic zinc ion in the variant enzymes in their native, cofactor-bound, and inhibited forms. We show that the catalytic zinc site in the studied complexes of the variant enzymes exhibits minor changes relative to the analogous complexes of wild-type TbADH. These moderate changes in the kinetic parameters and in the zinc ion environment imply that the Glu-60 in TbADH does not remain bound to the catalytic zinc ion during catalysis. Furthermore, our results suggest that a water molecule replaces this residue during substrate turnover.  相似文献   
87.
Epidemiological evidence suggests that chronic use of non-steroidal anti-inflammatory drugs (NSAIDs) reduces the risk of Alzheimer's disease. Recently, NSAIDs have been shown to decrease amyloid pathology in a transgenic mouse model of Alzheimer's disease. This benefit may be partially attributable to the ability of NSAIDs to selectively reduce production of the amyloidogenic A beta 42 peptide in both cultured cells and transgenic mice. Although this activity does not appear to require the action of cyclooxygenases in cultured cells, it is not known whether other NSAID-sensitive targets contribute to this A beta 42 effect. In this study, we have used both pharmacological and genetic means to determine if other known cellular targets of NSAIDs could mediate the reduction in A beta 42 secretion from cultured cells. We find that altered arachidonic acid metabolism via NSAID action on cyclooxygenases and lipoxygenases does not alter A beta 42 production. Furthermore, we demonstrate that alterations in activity of peroxisome proliferator-activated receptors, I kappa B kinase beta or nuclear factor kappa B do not affect A beta 42 production. Thus, NSAIDs do not appear to alter A beta 42 production indirectly through previously identified cellular targets and may interact directly with the gamma-secretase complex itself to affect amyloid production.  相似文献   
88.
We examined the possible occurrence and function of neuronal Ca(2+) sensor 1 (NCS-1/frequenin) in the mast cell line rat basophilic leukemia, RBL-2H3. This protein has been implicated in the control of neurosecretion from dense core granules in neuronal cells as well as in the control of constitutive secretory pathways in both yeast and mammalian cells. We show that RBL-2H3 cells, secretory cells of the immune system, endogenously express the 22-kDa NCS-1 protein as well as an immune-related 50-kDa protein. Both proteins associate in vivo with phosphatidylinositol 4-kinase beta (PI4Kbeta) and colocalize with the enzyme in the Golgi region. We show further that overexpression of NCS-1 in RBL-2H3 cells stimulates the catalytic activity of PI4Kbeta, increases IgE receptor (FcepsilonRI)-triggered hydrolysis of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)), and stimulates FcepsilonRI-triggered, but not Ca(2+) ionophore-triggered, exocytosis. Conversely, expression of a kinase-dead mutant of PI4Kbeta reduces PI4Kbeta activity, decreases FcepsilonRI-stimulated phosphatidylinositol 4,5-bisphosphate hydrolysis, and blocks FcepsilonRI-triggered, but not Ca(2+) ionophore-triggered, exocytosis. Our results indicate that PI(4)P, produced by the Golgi-localized PI4Kbeta, is the rate-limiting factor in the synthesis of the pool of PI(4,5)P(2) that serves as substrate for the generation of lipid-derived second messengers in FcepsilonRI-triggered cells. We conclude that NCS-1 is involved in the control of regulated exocytosis in nonneural cells, where it contributes to stimulus-secretion coupling by interacting with PI4Kbeta and positive regulation of its activity.  相似文献   
89.
Summary Electroporation conditions were established for transient expression of introduced DNA in banana (Musa spp., cv. Bluggoe) protoplasts isolated from regenerable embryogenic cell suspensions. The following parameters were found to be highly influential: electroporation buffer, polyethylene glycol treatment and its duration before electroporation, use of a heat shock, and chimaeric gene constructs. The maximum frequency of DNA introduction as detected by an in situ assay for transient expression of the uidA gene, amounted to 1.8% of total protoplasts. Since plants have recently been regenerated from banana protoplasts at a high frequency, the present results may contribute to the production of transgenic banana.Abbreviations AMV alfalfa mosaic virus - CaMV cauliflower mosaic virus - 2,4-D 2,4-dichlorophenoxyacetic acid - EGTA ethylene glycol-O-O'-bis(2-aminoethyl)-N,N,N',N'-tetraacetic acid - GUS glucuronidase - HEPES 4-(2-nydroxyethyl)piperazine-1-etnanesulfonic acid - MES 2-morpholinoethanesulfonic acid - MS Murashige-Skoog - NOS nopaline synthase - NFTII neomycin phosphotransferase - PEG polyethylene glycol - TGE transient GUS expression - X-Gluc 5-bromo-4-chloro-3-indolyl -D-glucuronic acid  相似文献   
90.
Abstract: Cholinergic synaptosomes isolated from the electric organ of Torpedo contain membrane-bound adenylate cyclase activity (∼6 pmol/mg proteidmin), which is dependent on the presence of guanine nucleotides. The activity is strongly dependent on temperature and only slightly affected by NaCl. The Torpedo adenylate cyclase is completely inhibited by low levels of free Ca2+ (K0∼ 0.5 μ M ). This effect is not altered by either trifluoperazine or addition of exogenous calmodulin. Ca3+ has no effect on the activation step of the adenylate cyclase by guanyl-5'-yl imidodiphosphate (GppNHp), and Mn2+ abolishes the Ca2+-dependent inhibition of cyclic AMP synthesis. These findings suggest that Ca2+ exerts its effect by direct interaction with a site located on the catalytic subunit. Torpedo synaptosomes contain presynaptic inhibitory muscarinic receptors. The binding of muscarinic agonists to the receptors is modulated (to lower affinity) by GTP. However, muscarinic ligands, examined under a variety of assay conditions, have no effect on adenylate cyclase activity. These results suggest that although both the muscarinic receptor and the adenylate cyclase are coupled to G proteins, they either interact with different G proteins or are situated in different regions of the presynaptic membrane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号