首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4558篇
  免费   431篇
  2023年   22篇
  2022年   24篇
  2021年   73篇
  2020年   58篇
  2019年   62篇
  2018年   74篇
  2017年   54篇
  2016年   112篇
  2015年   166篇
  2014年   181篇
  2013年   225篇
  2012年   317篇
  2011年   338篇
  2010年   207篇
  2009年   207篇
  2008年   294篇
  2007年   283篇
  2006年   282篇
  2005年   232篇
  2004年   243篇
  2003年   247篇
  2002年   252篇
  2001年   55篇
  2000年   43篇
  1999年   65篇
  1998年   61篇
  1997年   64篇
  1996年   52篇
  1995年   58篇
  1994年   40篇
  1993年   29篇
  1992年   38篇
  1991年   35篇
  1990年   29篇
  1989年   39篇
  1988年   38篇
  1987年   31篇
  1986年   23篇
  1985年   25篇
  1984年   37篇
  1983年   23篇
  1982年   28篇
  1981年   24篇
  1980年   17篇
  1979年   25篇
  1978年   14篇
  1977年   11篇
  1976年   12篇
  1975年   16篇
  1969年   9篇
排序方式: 共有4989条查询结果,搜索用时 15 毫秒
111.
Parasites comprise a significant percentage of the biodiversity of the planet and are useful systems to test evolutionary and ecological hypotheses. In this study, we analyze the effect of host species identity and the immediate local species assemblage within mixed species colonies of nesting seabirds on patterns of genetic clustering within two species of multihost ectoparasitic lice. We use three genetic markers (one mitochondrial, COI, and two nuclear, EF1‐α and wingless) and maximum likelihood phylogenetic trees to test whether (1) parasites show lineage sorting based on their host species; and (2) switching of lineages to the alternate host species depends on the immediate local species assemblage of individual hosts within a colony. Specifically, we examine the genetic structure of two louse species: Eidmanniella albescens, infecting both Nazca (Sula granti) and blue‐footed boobies (Sula nebouxii), and Fregatiella aurifasciata, infecting both great (Fregata minor) and magnificent frigatebirds (Fregata magnificens). We found that host species identity was the only factor explaining the patterns of genetic structure in both parasites. In both cases, there is evident genetic differentiation depending on the host species. Thus, a revision of the taxonomy of these louse species is needed. One possible explanation of this pattern is extremely low louse migration rates between host species, perhaps influenced by fine‐scale spatial separation of host species within mixed colonies, and low parasite infrapopulation numbers.  相似文献   
112.
Substrate binding to Hsp70 chaperones is involved in many biological processes, and the identification of potential substrates is important for a comprehensive understanding of these events. We present a multi‐scale pipeline for an accurate, yet efficient prediction of peptides binding to the Hsp70 chaperone BiP by combining sequence‐based prediction with molecular docking and MMPBSA calculations. First, we measured the binding of 15mer peptides from known substrate proteins of BiP by peptide array (PA) experiments and performed an accuracy assessment of the PA data by fluorescence anisotropy studies. Several sequence‐based prediction models were fitted using this and other peptide binding data. A structure‐based position‐specific scoring matrix (SB‐PSSM) derived solely from structural modeling data forms the core of all models. The matrix elements are based on a combination of binding energy estimations, molecular dynamics simulations, and analysis of the BiP binding site, which led to new insights into the peptide binding specificities of the chaperone. Using this SB‐PSSM, peptide binders could be predicted with high selectivity even without training of the model on experimental data. Additional training further increased the prediction accuracies. Subsequent molecular docking (DynaDock) and MMGBSA/MMPBSA‐based binding affinity estimations for predicted binders allowed the identification of the correct binding mode of the peptides as well as the calculation of nearly quantitative binding affinities. The general concept behind the developed multi‐scale pipeline can readily be applied to other protein‐peptide complexes with linearly bound peptides, for which sufficient experimental binding data for the training of classical sequence‐based prediction models is not available. Proteins 2016; 84:1390–1407. © 2016 Wiley Periodicals, Inc.  相似文献   
113.
114.
Hyperglycemia is an independent risk factor for diabetes-associated cardiovascular disease. One potential mechanism involves hyperglycemia-induced changes in arterial wall extracellular matrix components leading to increased atherosclerosis susceptibility. A decrease in heparan sulfate (HS) glycosaminoglycans (GAG) has been reported in diabetic arteries. The present studies examined the effects of high glucose on in vitro production of proteoglycans (PG) by aortic endothelial cells. Exposure of cells to high glucose (30 vs. 5 mM glucose) resulted in decreased [(35)S] sodium sulfate incorporation specifically into secreted HSPG. Differences were not due to hyperosmolar effects and no changes were observed in CS/DSPG. Enzymatic procedures, immunoprecipitation and Western analyses demonstrated that high glucose induced changes specifically in the HSPG, perlecan. In double-label experiments, lower sulfate incorporation in high-glucose-treated cells was accompanied by lower [(3)H] glucosamine incorporation into GAG but not lower [(3)H] serine incorporation into PG core proteins. Size exclusion chromatography demonstrated that GAG size was unchanged and GAG sulfation was not reduced. These results indicate that the level of regulation of perlecan by high glucose is posttranslational, involving a modification in molecular structure, possibly a decrease in the number of HS GAG chains on the core protein.  相似文献   
115.
Margittai M  Fasshauer D  Jahn R  Langen R 《Biochemistry》2003,42(14):4009-4014
Syntaxin 1a is a member of the SNARE superfamily of small, mostly membrane-bound proteins that mediate membrane fusion in all eukaryotic cells. Upon membrane fusion, syntaxin 1 forms a stable complex with its partner SNAREs. Syntaxin contains a C-terminal transmembrane domain, an adjacent SNARE motif that interacts with its partner SNAREs, and an N-terminal Habc domain. The Habc domain reversibly folds back upon the SNARE motif, resulting in a "closed" conformation that is stabilized by binding to the protein munc18. The SNARE motif and the Habc domain are separated by a linker region of about 40 amino acids. When syntaxin is complexed with munc18, the linker is structured and consists of a mix of turns and small alpha-helices. When syntaxin is complexed with its partner SNAREs, the Habc domain is dissociated, but the structure of the linker region is not known. Here we used site-directed spin labeling and EPR spectroscopy to determine the structure of the linker region of syntaxin in the SNARE complex. We found that the entire linker region of syntaxin is unstructured except for three residues at the N-terminal and six residues at the C-terminal boundary whereas the structures of the flanking regions in the Habc domain and the SNARE motif correspond to the high-resolution structures of the isolated fragments. We conclude that the linker region exhibits a high degree of conformational flexibility.  相似文献   
116.
The arabinogalactan protein (AGP) fractions of embryogenic and non-embryogenic callus lines of Euphorbia pulcherrima Willd. ex. Klotzsch were analysed over a cultivation period of 9 weeks using the β -glucosyl Yariv reagent and an anti-AGP antibody (LM2). The amount of AGPs detected with the Yariv reagent increased in embryogenic cultures during the development of somatic embryos. The embryogenic and non-embryogenic callus contained different sets of AGPs characterized with the Yariv reagent and the LM2 monoclonal antibody. AGPs recognized by LM2 are localized primarily in the protodermal cells of globular somatic embryos. The development of somatic embryos of E. pulcherrima appears to be associated with the presence of particular AGPs.  相似文献   
117.
Alzheimer’s disease, the most common neurodegenerative disorder of senile dementia, is characterized by two major morpho-pathological hallmarks. Deposition of extracellular neuritic, β-amyloid peptide-containing plaques (senile plaques) in cerebral cortical regions of Alzheimer patients is accompanied by the presence of intracellular neurofibrillary tangles in cerebral pyramidal neurons. Basal forebrain cholinergic dysfunction is also a consistent feature of Alzheimer’s disease, which has been suggested to cause, at least partly, the cognitive deficits observed in patients with Alzheimer’s disease. Impaired cortical cholinergic neurotransmission may also contribute to β-amyloid plaque pathology in Alzheimer’s disease by affecting expression and processing of the β-amyloid precursor protein (APP). Vice versa, low level of soluble β-amyloid has been observed to inhibit cholinergic synaptic function. Deposition of β-amyloid plaques in Alzheimer’s disease is also accompanied by a significant plaque-associated glial up-regulation of interleukin-1, which has been attributed to affect expression and metabolism of APP and to interfere with cholinergic transmission. Understanding the molecular mechanisms underlying the interrelationship between cortical cholinergic dysfunction, β-amyloid formation and deposition, as well as local inflammatory upregulation, would allow to derive potential treatment strategies to pharmacologically intervene in the disease-causing signaling cascade.  相似文献   
118.
Three site-specific mutations were performed in two regions of a sialidase gene fromClostridium perfringens which are known to be conserved in bacterial sialidases. The mutant enzymes were expressed inEscherichia coli and, when measured with MU-Neu5Ac as substrate, exhibited variations in enzymatic properties compared with the wild-type enzyme. The conservative substitution of Arg 37 by Lys, located in a short conserved region upstream from the four repeated sequences common in bacterial sialidase genes, was of special interest, asK M andV max, as well asK i measured with Neu5Ac2en, were dramatically changed. These data suggest that this residue may be involved in substrate binding. In addition to its low activity, this mutant enzyme has a lower temperature optimum and is active over a more limited pH range. This mutation also prevents the binding of an antibody able to inhibit the wild-type sialidase. The other mutations, located in one of the consensus sequences, were of lower influence on enzyme activity and recognition by antibodies.  相似文献   
119.
Recent discovery of 5-hydroxymethylcytosine (5hmC) in genomic DNA raises the question how this sixth base is recognized by cellular proteins. In contrast to the methyl-CpG binding domain (MBD) of MeCP2, we found that the SRA domain of Uhrf1, an essential factor in DNA maintenance methylation, binds 5hmC and 5-methylcytosine containing substrates with similar affinity. Based on the co-crystal structure, we performed molecular dynamics simulations of the SRA:DNA complex with the flipped cytosine base carrying either of these epigenetic modifications. Our data indicate that the SRA binding pocket can accommodate 5hmC and stabilizes the flipped base by hydrogen bond formation with the hydroxyl group.  相似文献   
120.
Histone deacetylases have central functions in regulating stress defenses and development in plants. However, the knowledge about the deacetylase functions is largely limited to histones, although these enzymes were found in diverse subcellular compartments. In this study, we determined the proteome‐wide signatures of the RPD3/HDA1 class of histone deacetylases in Arabidopsis. Relative quantification of the changes in the lysine acetylation levels was determined on a proteome‐wide scale after treatment of Arabidopsis leaves with deacetylase inhibitors apicidin and trichostatin A. We identified 91 new acetylated candidate proteins other than histones, which are potential substrates of the RPD3/HDA1‐like histone deacetylases in Arabidopsis, of which at least 30 of these proteins function in nucleic acid binding. Furthermore, our analysis revealed that histone deacetylase 14 (HDA14) is the first organellar‐localized RPD3/HDA1 class protein found to reside in the chloroplasts and that the majority of its protein targets have functions in photosynthesis. Finally, the analysis of HDA14 loss‐of‐function mutants revealed that the activation state of RuBisCO is controlled by lysine acetylation of RuBisCO activase under low‐light conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号