首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6872篇
  免费   367篇
  国内免费   1篇
  2023年   36篇
  2022年   29篇
  2021年   79篇
  2020年   55篇
  2019年   80篇
  2018年   144篇
  2017年   125篇
  2016年   165篇
  2015年   177篇
  2014年   210篇
  2013年   319篇
  2012年   603篇
  2011年   796篇
  2010年   361篇
  2009年   163篇
  2008年   523篇
  2007年   495篇
  2006年   430篇
  2005年   406篇
  2004年   331篇
  2003年   340篇
  2002年   266篇
  2001年   88篇
  2000年   159篇
  1999年   106篇
  1998年   69篇
  1997年   28篇
  1996年   29篇
  1995年   31篇
  1994年   21篇
  1993年   18篇
  1992年   28篇
  1991年   25篇
  1990年   17篇
  1989年   21篇
  1988年   14篇
  1987年   32篇
  1986年   16篇
  1985年   30篇
  1984年   33篇
  1983年   14篇
  1982年   21篇
  1980年   17篇
  1979年   20篇
  1978年   15篇
  1976年   19篇
  1975年   14篇
  1974年   19篇
  1973年   16篇
  1971年   14篇
排序方式: 共有7240条查询结果,搜索用时 734 毫秒
101.
Kinetics and inhibition of Na+/K+-ATPase and Mg2+-ATPase activity from rat synaptic plasma membrane (SPM), by separate and simultaneous exposure to transition (Cu2+, Zn2+, Fe2+ and.Co2+) and heavy metals (Hg2+and Pb2+) ions were studied. All investigated metals produced a larger maximum inhibition of Na+/K+-ATPase than Mg2+-ATPase activity. The free concentrations of the key species (inhibitor, MgATP2 ? , MeATP2 ? ) in the medium assay were calculated and discussed. Simultaneous exposure to the combinations Cu2+/Fe2+ or Hg2+/Pb2+caused additive inhibition, while Cu2+/Zn2+ or Fe2+/Zn2+ inhibited Na+/K+-ATPase activity synergistically (i.e., greater than the sum metal-induced inhibition assayed separately). Simultaneous exposure to Cu2+/Fe2+ or Cu2+/Zn2+ inhibited Mg2+-ATPase activity synergistically, while Hg2+/Pb2+ or Fe2+/Zn2+ induced antagonistic inhibition of this enzyme. Kinetic analysis showed that all investigated metals inhibited Na+/K+-ATPase activity by reducing the maximum velocities (Vmax) rather than the apparent affinity (Km) for substrate MgATP2-, implying the noncompetitive nature of the inhibition. The incomplete inhibition of Mg2+-ATPase activity by Zn2+, Fe2+ and Co2+ as well as kinetic analysis indicated two distinct Mg2+-ATPase subtypes activated in the presence of low and high MgATP2 ? concentration. EDTA, L-cysteine and gluthathione (GSH) prevented metal ion-induced inhibition of Na+/K+-ATPase with various potencies. Furthermore, these ligands also reversed Na+/K+-ATPase activity inhibited by transition metals in a concentration-dependent manner, but a recovery effect by any ligand on Hg2+-induced inhibition was not obtained.  相似文献   
102.
Abstract

The enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are primary targets in attenuating the symptoms of neurodegenerative diseases. Their inhibition results in elevated concentrations of the neurotransmitter acetylcholine which supports communication among nerve cells. It was previously shown for trans-4/5-arylethenyloxazole compounds to have moderate AChE and BChE inhibitory properties. A preliminary docking study showed that elongating oxazole molecules and adding a new NH group could make them more prone to bind to the active site of both enzymes. Therefore, new trans-amino-4-/5-arylethenyl-oxazoles were designed and synthesised by the Buchwald-Hartwig amination of a previously synthesised trans-chloro-arylethenyloxazole derivative. Additionally, naphthoxazole benzylamine photoproducts were obtained by efficient photochemical electrocyclization reaction. Novel compounds were tested as inhibitors of both AChE and BChE. All of the compounds exhibited binding preference for BChE over AChE, especially for trans-amino-4-/5-arylethenyl-oxazole derivatives which inhibited BChE potently (IC50 in µM range) and AChE poorly (IC50?100?µM). Therefore, due to the selectivity of all of the tested compounds for binding to BChE, these compounds could be applied for further development of cholinesterase selective inhibitors.
  • HIGHLIGHTS
  • Series of oxazole benzylamines were designed and synthesised

  • The tested compounds showed binding selectivity for BChE

  • Naphthoxazoles were more potent AChE inhibitors

  相似文献   
103.
Abstract

Synthesis of the novel nucleoside analogues containing exocyclic pyrrolo moiety and acyclic side chains attached to the purine ring at N-9 and N-7 is described. The site of alkylation was determined by 1H and 13C NMR on the basis of chemical shifts, C-H coupling constants and connectivity in NOESY and HETCOR spectra. The N-9 substitution of 7 was proved by its X-ray crystallographic analysis.

  相似文献   
104.
105.
The X-ray repair cross-complementing group 3 gene (XRCC3) belongs to a family of genes responsible for repairing DNA double-strand breaks caused by normal metabolic processes and exposure to ionizing radiation. Polymorphisms in DNA repair genes may alter an individual's capacity to repair damaged DNA and may lead to genetic instability and contribute to malignant transformation. We examined the role of a polymorphism in the XRCC3 gene (rs861529; codon 241: threonine to methionine change) in determining breast cancer risk in Thai women. The study population consisted of 507 breast cancer cases and 425 healthy women. The polymorphism was analysed by fluorescence-based melting curve analysis. The XRCC3 241Met allele was found to be uncommon in the Thai population (frequency 0.07 among cases and 0.05 among controls). Odds ratios (OR) adjusted for age, body mass index, age at menarche, family history of breast cancer, menopausal status, reproduction parameters, use of contraceptives, tobacco smoking, involuntary tobacco smoking, alcohol drinking, and education were calculated for the entire population as well as for pre- and postmenopausal women. There was a significant association between 241Met carrier status and breast cancer risk (OR 1.58, 95% confidence interval (CI) 1.02–2.44). Among postmenopausal women, a slightly higher OR (1.82, 95% CI 0.95–3.51) was found than among premenopausal women (OR 1.48, 95% CI 0.82–2.69). Our findings suggest that the XRCC3 Thr241Met polymorphism is likely to play a modifying role in the individual susceptibility to breast cancer among Thai women as already shown for women of European ancestry.  相似文献   
106.
Abstract

Context: Accidental exposure to life-threatening radiation in a nuclear event is a major concern; there is an enormous need for identifying biomarkers for radiation biodosimetry to triage populations and treat critically exposed individuals.

Objective: To identify dose-differentiating miRNA signatures from whole blood samples of whole body irradiated mice.

Methods: Mice were whole body irradiated with X-rays (2?Gy–15?Gy); blood was collected at various time-points post-exposure; total RNA was isolated; miRNA microarrays were performed; miRNAs differentially expressed in irradiated vs. unirradiated controls were identified; feature extraction and classification models were applied to predict dose-differentiating miRNA signature.

Results: We observed a time and dose responsive alteration in the expression levels of miRNAs. Maximum number of miRNAs were altered at 24-h and 48-h time-points post-irradiation. A 23-miRNA signature was identified using feature selection algorithms and classifier models. An inverse correlation in the expression level changes of miR-17 members, and their targets were observed in whole body irradiated mice and non-human primates.

Conclusion: Whole blood-based miRNA expression signatures might be used for predicting radiation exposures in a mass casualty nuclear incident.  相似文献   
107.
Pyranose dehydrogenases (PDHs) are extracellular flavin-dependent oxidoreductases secreted by litter-decomposing fungi with a role in natural recycling of plant matter. All major monosaccharides in lignocellulose are oxidized by PDH at comparable yields and efficiencies. Oxidation takes place as single-oxidation or sequential double-oxidation reactions of the carbohydrates, resulting in sugar derivatives oxidized primarily at C2, C3 or C2/3 with the concomitant reduction of the flavin. A suitable electron acceptor then reoxidizes the reduced flavin. Whereas oxygen is a poor electron acceptor for PDH, several alternative acceptors, e.g., quinone compounds, naturally present during lignocellulose degradation, can be used. We have determined the 1.6-Å crystal structure of PDH from Agaricus meleagris. Interestingly, the flavin ring in PDH is modified by a covalent mono- or di-atomic species at the C(4a) position. Under normal conditions, PDH is not oxidized by oxygen; however, the related enzyme pyranose 2-oxidase (P2O) activates oxygen by a mechanism that proceeds via a covalent flavin C(4a)-hydroperoxide intermediate. Although the flavin C(4a) adduct is common in monooxygenases, it is unusual for flavoprotein oxidases, and it has been proposed that formation of the intermediate would be unfavorable in these oxidases. Thus, the flavin adduct in PDH not only shows that the adduct can be favorably accommodated in the active site, but also provides important details regarding the structural, spatial and physicochemical requirements for formation of this flavin intermediate in related oxidases. Extensive in silico modeling of carbohydrates in the PDH active site allowed us to rationalize the previously reported patterns of substrate specificity and regioselectivity. To evaluate the regioselectivity of D-glucose oxidation, reduction experiments were performed using fluorinated glucose. PDH was rapidly reduced by 3-fluorinated glucose, which has the C2 position accessible for oxidation, whereas 2-fluorinated glucose performed poorly (C3 accessible), indicating that the glucose C2 position is the primary site of attack.  相似文献   
108.
Carbon-based nanomaterials, like carbon nanotubes (CNTs), belong to this type of nanoparticles which are very difficult to discriminate from carbon-rich cell structures and de facto there is still no quantitative method to assess their distribution at cell and tissue levels. What we propose here is an innovative method allowing the detection and quantification of CNTs in cells using a multispectral imaging flow cytometer (ImageStream, Amnis). This newly developed device integrates both a high-throughput of cells and high resolution imaging, providing thus images for each cell directly in flow and therefore statistically relevant image analysis. Each cell image is acquired on bright-field (BF), dark-field (DF), and fluorescent channels, giving access respectively to the level and the distribution of light absorption, light scattered and fluorescence for each cell. The analysis consists then in a pixel-by-pixel comparison of each image, of the 7,000-10,000 cells acquired for each condition of the experiment. Localization and quantification of CNTs is made possible thanks to some particular intrinsic properties of CNTs: strong light absorbance and scattering; indeed CNTs appear as strongly absorbed dark spots on BF and bright spots on DF with a precise colocalization.This methodology could have a considerable impact on studies about interactions between nanomaterials and cells given that this protocol is applicable for a large range of nanomaterials, insofar as they are capable of absorbing (and/or scattering) strongly enough the light.  相似文献   
109.
Dalmatian pyrethrum (Tanacetum cinerariifolium (Trevir. ) Sch.Bip. ) is a plant species endemic to the east Adriatic coast. The bioactive substance of Dalmatian pyrethrum is a natural insecticide, pyrethrin, a mixture of six active components (pyrethrins I and II, cinerins I and II, and jasmolins I and II). The insecticidal potential of pyrethrin was recognized decades ago, and dried and ground flowers have traditionally been used in Croatian agriculture and households. A total of 25 Dalmatian pyrethrum populations from Croatia were studied to determine the pyrethrin content and composition, and to identify distinct chemotypes. The total pyrethrin content ranged from 0.36 to 1.30% (dry flower weight; DW) and the pyrethrin I/pyrethrin II ratio ranged from 0.64 to 3.33%. The statistical analyses revealed that the correlations between the percentage of pyrethrin I and of all the other components were significant and negative. The total pyrethrin content was positively correlated with the percentage of pyrethrin I and negatively correlated with cinerin II. The multivariate analysis of the chemical variability enabled the identification of five chemotypes among 25 Dalmatian pyrethrum populations. The chemical characterization of indigenous Dalmatian pyrethrum populations may serve as a good background for future breeding and agricultural exploitation.  相似文献   
110.
A rapid reversed‐phase (RP) high‐performance liquid chromatography method was developed and applied for simultaneous separation, and determination of flavonoids and phenolic acids in eight Plantago L. taxa (P. altissima L., P. argentea Chaix , P. coronopus L., P. holosteum Scop . ssp. depauperata Pilger , P. holosteum ssp. holosteum, P. holosteum ssp. scopulorum (Degen) Horvati? , P. lagopus L., and P. maritima L.) growing in Croatia. Chromatographic separation was carried out on Zorbax Eclipse XDB‐C18 using gradient elution with a H2O (pH 2.5, adjusted with CF3COOH) and MeCN mixture at 30°. The contents of analyzed phenolic compounds (% of the dry weight of the leaves, dw) varied among examined species: rutin (max. 0.024%, P. argentea), hyperoside (max. 0.020%, P. lagopus), quercitrin (max. 0.013%, P. holosteum ssp. holosteum), quercetin (max. 0.028%, P. holosteum ssp. scopulorum), chlorogenic acid (max. 0.115%, P. lagopus), and caffeic acid (max. 0.046%, P. coronopus). Isoquercitrin was detected only in P. argentea (0.020%), while isochlorogenic acid content was below limit of quantification in all investigated species. Multivariate analyses (UPGMA and PCA) showed significant differences in contents of investigated polyphenolic compounds between different Plantago taxa. Accordingly, investigated substances might be employed as chemotaxonomic markers in the study of the complex genus Plantago.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号