全文获取类型
收费全文 | 3581篇 |
免费 | 243篇 |
国内免费 | 5篇 |
专业分类
3829篇 |
出版年
2024年 | 3篇 |
2023年 | 14篇 |
2022年 | 52篇 |
2021年 | 84篇 |
2020年 | 37篇 |
2019年 | 59篇 |
2018年 | 90篇 |
2017年 | 63篇 |
2016年 | 110篇 |
2015年 | 166篇 |
2014年 | 189篇 |
2013年 | 240篇 |
2012年 | 295篇 |
2011年 | 326篇 |
2010年 | 202篇 |
2009年 | 162篇 |
2008年 | 228篇 |
2007年 | 253篇 |
2006年 | 253篇 |
2005年 | 235篇 |
2004年 | 208篇 |
2003年 | 165篇 |
2002年 | 194篇 |
2001年 | 21篇 |
2000年 | 7篇 |
1999年 | 18篇 |
1998年 | 28篇 |
1997年 | 18篇 |
1996年 | 17篇 |
1995年 | 13篇 |
1994年 | 14篇 |
1993年 | 13篇 |
1992年 | 7篇 |
1991年 | 7篇 |
1990年 | 5篇 |
1988年 | 1篇 |
1986年 | 3篇 |
1985年 | 2篇 |
1984年 | 2篇 |
1983年 | 3篇 |
1982年 | 3篇 |
1981年 | 4篇 |
1980年 | 2篇 |
1979年 | 2篇 |
1978年 | 4篇 |
1977年 | 1篇 |
1976年 | 2篇 |
1975年 | 1篇 |
1974年 | 1篇 |
1972年 | 1篇 |
排序方式: 共有3829条查询结果,搜索用时 15 毫秒
41.
Lundström P Teilum K Carstensen T Bezsonova I Wiesner S Hansen DF Religa TL Akke M Kay LE 《Journal of biomolecular NMR》2007,38(3):199-212
A simple labeling approach is presented based on protein expression in [1-13C]- or [2-13C]-glucose containing media that produces molecules enriched at methyl carbon positions or backbone Cα sites, respectively. All of the methyl groups, with the exception of Thr and Ile(δ1) are produced with isolated 13C spins (i.e., no 13C–13C one bond couplings), facilitating studies of dynamics through the use of spin-spin relaxation experiments without artifacts
introduced by evolution due to large homonuclear scalar couplings. Carbon-α sites are labeled without concomitant labeling
at Cβ positions for 17 of the common 20 amino acids and there are no cases for which 13Cα−13CO spin pairs are observed. A large number of probes are thus available for the study of protein dynamics with the results
obtained complimenting those from more traditional backbone 15N studies. The utility of the labeling is established by recording 13C R
1ρ and CPMG-based experiments on a number of different protein systems. 相似文献
42.
The glutamine- and asparagine-rich Rnq1p protein in Saccharomyces cerevisiae can exist in the cell as a soluble monomer or in one of several aggregated, infectious, prion forms called [PIN(+)]. Interest in [PIN(+)] is heightened by its ability to promote the conversion of other proteins into a prion or an aggregated amyloid state. However, little is known about the function of Rnq1p, which makes it difficult to assay the phenotypes associated with its normal vs. prion forms. In this chapter, we describe methods used to detect [PIN(+)] and distinguish between different variations of the prion. Genetic methods are based on the ability of the [PIN(+)] prion to facilitate the appearance of another yeast prion, [PSI(+)], which has an easily detectable phenotype. Biochemical methods exploit the fact that the [PIN(+)] prion exists in the yeast cytosol in the form of large aggregates, composed of SDS-stable subparticles. Sucrose gradient centrifugation, agarose SDS electrophoresis and GFP fusions are used to distinguish between aggregates and subparticles from different [PIN(+)] variants. 相似文献
43.
In brown-fat mitochondria, fatty acids induce thermogenic uncoupling through activation of UCP1 (uncoupling protein 1). However, even in brown-fat mitochondria from UCP1-/- mice, fatty-acid-induced uncoupling exists. In the present investigation, we used the inhibitor CAtr (carboxyatractyloside) to examine the involvement of the ANT (adenine nucleotide translocator) in the mediation of this UCP1-independent fatty-acid-induced uncoupling in brown-fat mitochondria. We found that the contribution of ANT to fatty-acid-induced uncoupling in UCP1-/- brown-fat mitochondria was minimal (whereas it was responsible for nearly half the fatty-acid-induced uncoupling in liver mitochondria). As compared with liver mitochondria, brown-fat mitochondria exhibit a relatively high (UCP1-independent) basal respiration ('proton leak'). Unexpectedly, a large fraction of this high basal respiration was sensitive to CAtr, whereas in liver mitochondria, basal respiration was CAtr-insensitive. Total ANT protein levels were similar in brown-fat mitochondria from wild-type mice and in liver mitochondria, but the level was increased in brown-fat mitochondria from UCP1-/- mice. However, in liver, only Ant2 mRNA was found, whereas in brown adipose tissue, Ant1 and Ant2 mRNA levels were equal. The data are therefore compatible with a tentative model in which the ANT2 isoform mediates fatty-acid-induced uncoupling, whereas the ANT1 isoform may mediate a significant part of the high basal proton leak in brown-fat mitochondria. 相似文献
44.
Cimponeriu D Apostol P Radu I Craciun AM Serafinceanu C Toma M Panaite C Cheta D 《Genetics and molecular biology》2010,33(4):610-614
The insulin -23Hph and IGF2 Apa polymorphisms were genotyped in Romanian patients with T1DM (n = 204), T2DM (n = 215) or obesity (n = 200) and normoponderal healthy subjects (n = 750). The genotypes of both polymorphisms were distributed in concordance with Hardy-Weinberg equilibrium in all groups. The -23Hph AA genotype increased the risk for T1DM (OR: 3.22, 95%CI: 2.09-4.98, p < 0,0001), especially in patients without macroalbuminuria (OR: 4.32, 95%CI: 2.54-7.45, p < 0,0001). No other significant association between the alleles or genotypes of insulin -23Hph and IGF2 Apa and diabetes or obesity was identified. 相似文献
45.
Tamara Azarashvili Irina Odinokova Anush Bakunts Vadim Ternovsky Olga Krestinina Jaana Tyynelä Nils-Erik Leo Saris 《Cell calcium》2014
Phosphorylated and non-phosphorylated forms of the F0F1-ATPase subunit c from rat liver mitochondria (RLM) were purified and their effect on the opening of the permeability transition pore (mPTP) was investigated. Addition of dephosphorylated subunit c to RLM induced mitochondrial swelling, decreased the membrane potential and reduced the Ca2+ uptake capacity, which was prevented by cyclosporin A. The same effect was observed in the presence of storage subunit c purified from livers of sheep affected with ceroid lipofuscinosis. In black-lipid bilayer membranes subunit c increased the conductance due to formation of single channels with fast and slow kinetics. The dephosphorylated subunit c formed channels with slow kinetics, i.e. the open state being of significantly longer duration than in the case of channels formed by the phosphorylated form that had short life spans and fast kinetics. The channels formed were cation-selective more so with the phosphorylated form. Subunit c of rat liver mitochondria was able to bind Ca2+. Collectively, the data allowed us to suppose that subunit c F0F1-ATPase might be a structural/regulatory component of mPTP exerting its role in dependence on phosphorylation status. 相似文献
46.
Hudson RP Chong PA Protasevich II Vernon R Noy E Bihler H An JL Kalid O Sela-Culang I Mense M Senderowitz H Brouillette CG Forman-Kay JD 《The Journal of biological chemistry》2012,287(34):28480-28494
Deletion of Phe-508 (F508del) in the first nucleotide binding domain (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR) leads to defects in folding and channel gating. NMR data on human F508del NBD1 indicate that an H620Q mutant, shown to increase channel open probability, and the dual corrector/potentiator CFFT-001 similarly disrupt interactions between β-strands S3, S9, and S10 and the C-terminal helices H8 and H9, shifting a preexisting conformational equilibrium from helix to coil. CFFT-001 appears to interact with β-strands S3/S9/S10, consistent with docking simulations. Decreases in T(m) from differential scanning calorimetry with H620Q or CFFT-001 suggest direct compound binding to a less thermostable state of NBD1. We hypothesize that, in full-length CFTR, shifting the conformational equilibrium to reduce H8/H9 interactions with the uniquely conserved strands S9/S10 facilitates release of the regulatory region from the NBD dimerization interface to promote dimerization and thereby increase channel open probability. These studies enabled by our NMR assignments for F508del NBD1 provide a window into the conformational fluctuations within CFTR that may regulate function and contribute to folding energetics. 相似文献
47.
Hantaviruses predominantly infect human endothelial cells and, in the absence of cell lysis, cause two diseases resulting from increased vascular permeability. Andes virus (ANDV) causes a highly lethal acute pulmonary edema termed hantavirus pulmonary syndrome (HPS). ANDV infection enhances the permeability of endothelial cells in response to vascular endothelial growth factor (VEGF) by increasing signaling responses directed by the VEGFR2-Src-VE-cadherin pathway, which directs adherens junction (AJ) disassembly. Here we demonstrate that inhibiting pathway-specific VEGFR2 and Src family kinases (SFKs) blocks ANDV-induced endothelial cell permeability. Small interfering RNA (siRNA) knockdown of Src within ANDV-infected endothelial cells resulted in an ~70% decrease in endothelial cell permeability compared to that for siRNA controls. This finding suggested that existing FDA-approved small-molecule kinase inhibitors might similarly block ANDV-induced permeability. The VEGFR2 kinase inhibitor pazopanib as well as SFK inhibitors dasatinib, PP1, bosutinib, and Src inhibitor 1 dramatically inhibited ANDV-induced endothelial cell permeability. Consistent with their kinase-inhibitory concentrations, dasatinib, PP1, and pazopanib inhibited ANDV-induced permeability at 1, 10, and 100 nanomolar 50% inhibitory concentrations (IC(50)s), respectively. We further demonstrated that dasatinib and pazopanib blocked VE-cadherin dissociation from the AJs of ANDV-infected endothelial cells by >90%. These findings indicate that VEGFR2 and Src kinases are potential targets for therapeutically reducing ANDV-induced endothelial cell permeability and, as a result, capillary permeability during HPS. Since the functions of VEGFR2 and SFK inhibitors are already well defined and FDA approved for clinical use, these findings rationalize their therapeutic evaluation for efficacy in reducing HPS disease. Endothelial cell barrier functions are disrupted by a number of viruses that cause hemorrhagic, edematous, or neurologic disease, and as a result, our findings suggest that VEGFR2 and SFK inhibitors should be considered for regulating endothelial cell barrier functions altered by additional viral pathogens. 相似文献
48.
Evidence of compromised blood-spinal cord barrier in early and late symptomatic SOD1 mice modeling ALS 总被引:1,自引:0,他引:1
Garbuzova-Davis S Saporta S Haller E Kolomey I Bennett SP Potter H Sanberg PR 《PloS one》2007,2(11):e1205
Background
The blood-brain barrier (BBB), blood-spinal cord barrier (BSCB), and blood-cerebrospinal fluid barrier (BCSFB) control cerebral/spinal cord homeostasis by selective transport of molecules and cells from the systemic compartment. In the spinal cord and brain of both ALS patients and animal models, infiltration of T-cell lymphocytes, monocyte-derived macrophages and dendritic cells, and IgG deposits have been observed that may have a critical role in motor neuron damage. Additionally, increased levels of albumin and IgG have been found in the cerebrospinal fluid in ALS patients. These findings suggest altered barrier permeability in ALS. Recently, we showed disruption of the BBB and BSCB in areas of motor neuron degeneration in the brain and spinal cord in G93A SOD1 mice modeling ALS at both early and late stages of disease using electron microscopy. Examination of capillary ultrastructure revealed endothelial cell degeneration, which, along with astrocyte alteration, compromised the BBB and BSCB. However, the effect of these alterations upon barrier function in ALS is still unclear. The aim of this study was to determine the functional competence of the BSCB in G93A mice at different stages of disease.Methodology/Principal Findings
Evans Blue (EB) dye was intravenously injected into ALS mice at early or late stage disease. Vascular leakage and the condition of basement membranes, endothelial cells, and astrocytes were investigated in cervical and lumbar spinal cords using immunohistochemistry. Results showed EB leakage in spinal cord microvessels from all G93A mice, indicating dysfunction in endothelia and basement membranes and confirming our previous ultrastructural findings on BSCB disruption. Additionally, downregulation of Glut-1 and CD146 expressions in the endothelial cells of the BSCB were found which may relate to vascular leakage.Conclusions/Significance
Results suggest that the BSCB is compromised in areas of motor neuron degeneration in ALS mice at both early and late stages of the disease. 相似文献49.
Ellingsgaard H Hauselmann I Schuler B Habib AM Baggio LL Meier DT Eppler E Bouzakri K Wueest S Muller YD Hansen AM Reinecke M Konrad D Gassmann M Reimann F Halban PA Gromada J Drucker DJ Gribble FM Ehses JA Donath MY 《Nature medicine》2011,17(11):1481-1489
Exercise, obesity and type 2 diabetes are associated with elevated plasma concentrations of interleukin-6 (IL-6). Glucagon-like peptide-1 (GLP-1) is a hormone that induces insulin secretion. Here we show that administration of IL-6 or elevated IL-6 concentrations in response to exercise stimulate GLP-1 secretion from intestinal L cells and pancreatic alpha cells, improving insulin secretion and glycemia. IL-6 increased GLP-1 production from alpha cells through increased proglucagon (which is encoded by GCG) and prohormone convertase 1/3 expression. In models of type 2 diabetes, the beneficial effects of IL-6 were maintained, and IL-6 neutralization resulted in further elevation of glycemia and reduced pancreatic GLP-1. Hence, IL-6 mediates crosstalk between insulin-sensitive tissues, intestinal L cells and pancreatic islets to adapt to changes in insulin demand. This previously unidentified endocrine loop implicates IL-6 in the regulation of insulin secretion and suggests that drugs modulating this loop may be useful in type 2 diabetes. 相似文献
50.
Carla D. Jorge Nuno Borges Irina Bagyan Andreas Bilstein Helena Santos 《Extremophiles : life under extreme conditions》2016,20(3):251-259
Protein misfolding, aggregation and deposition in the brain, in the form of amyloid, are implicated in the etiology of several neurodegenerative disorders, such as Alzheimer’s, Parkinson’s and prion diseases. Drugs available on the market reduce the symptoms, but they are not a cure. Therefore, it is urgent to identify promising targets and develop effective drugs. Preservation of protein native conformation and/or inhibition of protein aggregation seem pertinent targets for drug development. Several studies have shown that organic solutes, produced by extremophilic microorganisms in response to osmotic and/or heat stress, prevent denaturation and aggregation of model proteins. Among these stress solutes, mannosylglycerate, mannosylglyceramide, di-myo-inositol phosphate, diglycerol phosphate and ectoine are effective in preventing amyloid formation by Alzheimer’s Aβ peptide and/or α-synuclein in vitro. Moreover, mannosylglycerate is a potent inhibitor of Aβ and α-synuclein aggregation in living cells, and mannosylglyceramide and ectoine inhibit aggregation and reduce prion peptide-induced toxicity in human cells. This review focuses on the efficacy of stress solutes from hyper/thermophiles and ectoines to prevent amyloid formation in vitro and in vivo and their potential application in drug development against protein misfolding diseases. Current and envisaged applications of these extremolytes in neurodegenerative diseases and healthcare will also be addressed. 相似文献