首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3571篇
  免费   241篇
  国内免费   5篇
  2024年   2篇
  2023年   14篇
  2022年   41篇
  2021年   84篇
  2020年   37篇
  2019年   59篇
  2018年   90篇
  2017年   63篇
  2016年   110篇
  2015年   166篇
  2014年   189篇
  2013年   240篇
  2012年   295篇
  2011年   326篇
  2010年   202篇
  2009年   162篇
  2008年   228篇
  2007年   253篇
  2006年   253篇
  2005年   235篇
  2004年   208篇
  2003年   165篇
  2002年   194篇
  2001年   21篇
  2000年   7篇
  1999年   18篇
  1998年   28篇
  1997年   18篇
  1996年   17篇
  1995年   13篇
  1994年   14篇
  1993年   13篇
  1992年   7篇
  1991年   7篇
  1990年   5篇
  1988年   1篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1982年   3篇
  1981年   4篇
  1980年   2篇
  1979年   2篇
  1978年   4篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有3817条查询结果,搜索用时 280 毫秒
11.
The aim of our study was to evaluate whether ciliary neurotrophic factor (CNTF) can substitute for leukaemia inhibitory factor (LIF) in maintaining pluripotential embryonic stem (ES) cells in culture. Two subclones of D3 ES cells were used to assess cell proliferation and differentiation in the presence of CNTF, LIF or Buffalo rat liver (BRL) cell-conditioned medium, or in the absence of exogenous differentiation inhibiting factors. ES cells maintained in medium supplemented with CNTF for up to four weeks were injected into blastocysts to investigate theirin vivo pluripotency in terms of chimaera formation. CNTF inhibited ES cell differentiation in a dose-dependent manner. The most effective concentration was 10 ng CNTF per ml of medium. The effects of CNTF on ES cell differentiation and proliferation were comparable to those of LIF at the same concentration. BRL cell-conditioned medium was less effective at preventing ES cell differentiation but induced their proliferation very markedly. Both ES cell clones efficiently formed chimaeras after long-term culture with CNTF as the only differentiation inhibiting agent. The ability of these ES cells to colonize the germ-line is the ultimate proof that CNTF can preserve the pluripotency of ES cells.  相似文献   
12.
Cytochrome P450 can undergo inactivation following monooxygenase reactions in liver microsomes of untreated, phenobarbital and 3-methylcholanthrene-treated rats and rabbits. The acceleration of cytochrome P450 loss in the presence of catalase inhibitors (sodium azide, hydroxylamine) indicates that hydrogen peroxide is involved in hemoprotein degradation. It was revealed that cytochrome P450 is inactivated mainly by H2O2 formed through peroxy complex breakdown, whereas H2O2 formed via the dismutation of superoxide anions produces a slight inactivating effect. The hydrogen peroxide added outside or formed by a glucose-glucose oxidase system has less of an inactivating effect than H2O2 produced within the cytochrome P450 active center. Self-inactivation of cytochrome P450 during oxygenase reactions is highly specific. Other components of the monooxygenase system, such as cytochrome b5, NADH- and NADPH-specific flavorproteins, undergo no inactivation. The alterations in phospholipid content and in the rate of lipid peroxidation were not observed as well. The inactivation of cytochrome P450 by H2O2 is the result of heme loss or destruction without cytochrome P420 formation. Such. a mechanism operates with different substrates and cytochrome P450 species catalyzing the partially coupled monooxygenase reactions.  相似文献   
13.
The localization of centromeres in mature human sperm was shown by immunofluorescent labeling and nonisotopic in situ hybridization. In the decondensed nucleus structural elements (dimers, tetramers, linear arrays and V shape structures) formed by individual centromeres of nonhomologous chromosomes were observed. They organize the compact chromocenter, which was shown for nuclei decondensed to a low extent. The chromocenter is buried inside the nucleus; in contrast, telomeric regions of chromosomes were tentatively localized on the periphery. Thus, a gross architecture, which can influence selective unpackaging of the paternal genome upon fertilization, exists in human sperm.  相似文献   
14.
The X-ray structure of human serum ceruloplasmin has been solved at a resolution of 3.1?Å. The structure reveals that the molecule is comprised of six plastocyanin-type domains arranged in a triangular array. There are six copper atoms; three form a trinuclear cluster sited at the interface of domains 1 and 6, and there are three mononuclear sites in domains 2, 4 and 6. Each of the mononuclear coppers is coordinated to a cysteine and two histidine residues, and those in domains 4 and 6 also coordinate to a methionine residue; in domain 2, the methionine is replaced by a leucine residue which may form van der Waals type contacts with the copper. The trinuclear centre and the mononuclear copper in domain 6 form a cluster essentially the same as that found in ascorbate oxidase, strongly suggesting an oxidase role for ceruloplasmin in the plasma.  相似文献   
15.
Summary -Chymotrypsin has been modified with poly(ethylene glycols) and proxanols, block-copolymers of poly(propylene oxide) and poly(ethylene oxide). These conjugates were several-fold more thermostable and showed high catalytic activity at elevated concentrations of water-miscible organic cosolvents (alcohols and dimethyl sulfoxide) which caused inactivation of free (non-modified) -chymotrypsin.  相似文献   
16.
The Escherichia coli toxin exporter HlyB comprises an integral membrane domain fused to a cytoplasmic domain of the ATP-binding casette (ABC) super-family, and it directs translocation of the 110kDa haemolysin protein out of the bacterial cell without using an N-terminal secretion signal peptide. We have exploited the ability to purify the soluble HlyB ABC domain as a fusion with glutathione S-transferase to obtain a direct correlation of the in vivo export of protein by HlyB with the degree of ATP binding and hydrolysis measured in vitro. Mutations in residues that are invariant or highly conserved in the ATP-binding fold and glycine-rich linker peptide of prokaryotic and eukaryotic ABC transporters caused a complete less of both HlyB exporter function and ATPase activity in proteins still able to bind ATP effectively and undergo ATP-induced conformational change. Mutation of less-conserved residues caused reduced export and ATP hydrolysis, but not ATP binding, whereas substitutions of poorly conserved residues did not impair activity either in vivo or in vitro. The data show that protein export by HlyB has an absolute requirement for the hydrolysis of ATP bound by its cytoplasmic domain and indicate that comparable mutations that disable other prokaryotic and eukaryotic ABC transporters also cause a specific loss of enzymatic activity.  相似文献   
17.
Summary The RuvA and RuvB proteins of Escherichia coli play important roles in the post-replicational repair of damaged DNA, genetic recombination and cell division. In this paper, we describe the construction of over expression vectors for RuvA and RuvB and detail simple purification schemes for each protein. The purified 22 kDa RuvA polypeptide forms a tetrameric protein (Mr ca. 100000) as observed by gel filtration. The tetramer is stabilised by strong disulphide bridges that resist denaturation during SDS-PAGE (in the absence of boiling and -mercaptoethanol). In contrast, purified RuvB polypeptides (37 kDa) weakly associate to form a dimeric protein (Mr ca. 85000). At low protein concentrations, the RuvB dimer dissociates into monomers. The multimeric forms of each protein may be covalently linked by the bifunctional cross-linking reagent dimethyl suberimidate. Addition of purified RuvA and RuvB to a RecA-mediated recombination reaction was found to stimulate the rate of strand exchange leading to the rapid formation of heteroduplex DNA.  相似文献   
18.
The proto-oncogene c-Src is involved in a variety of signaling processes. Therefore, c-Src spatiotemporal localization is critical for interaction with downstream targets. However, the mechanisms regulating this localization have remained elusive. Previous studies have shown that c-Src trafficking is a microtubule-dependent process that facilitates c-Src turnover in neuronal growth cones. As such, microtubule depolymerization lead to the inhibition of c-Src recycling. Alternatively, c-Src trafficking was also shown to be regulated by RhoB-dependent actin polymerization. Our results show that c-Src vesicles primarily exhibit microtubule-dependent trafficking; however, microtubule depolymerization does not inhibit vesicle movement. Instead, vesicular movement becomes both faster and less directional. This movement was associated with actin polymerization directly at c-Src vesicle membranes. Interestingly, it has been shown previously that c-Src delivery is an actin polymerization-dependent process that relies on small GTPase RhoB at c-Src vesicles. In agreement with this finding, microtubule depolymerization induced significant activation of RhoB, together with actin comet tail formation. These effects occurred downstream of GTP-exchange factor, GEF-H1, which was released from depolymerizing MTs. Accordingly, GEF-H1 activity was necessary for actin comet tail formation at the Src vesicles. Our results indicate that regulation of c-Src trafficking requires both microtubules and actin polymerization, and that GEF-H1 coordinates c-Src trafficking, acting as a molecular switch between these two mechanisms.  相似文献   
19.
20.
ATP is an important modulator of gating in type 1 ryanodine receptor (RyR1), also known as a Ca2+ release channel in skeletal muscle cells. The activating effect of ATP on this channel is achieved by directly binding to one or more sites on the RyR1 protein. However, the number and location of these sites have yet to be determined. To identify the ATP-binding regions within RyR1 we used 2N3ATP-2′,3′-Biotin-LC-Hydrazone (BioATP-HDZ), a photo-reactive ATP analog to covalently label the channel. We found that BioATP-HDZ binds RyR1 specifically with an IC50 = 0.6±0.2 mM, comparable with the reported EC50 for activation of RyR1 with ATP. Controlled proteolysis of labeled RyR1 followed by sequence analysis revealed three fragments with apparent molecular masses of 95, 45 and 70 kDa that were crosslinked by BioATP-HDZ and identified as RyR1 sequences. Our analysis identified four glycine-rich consensus motifs that can potentially constitute ATP-binding sites and are located within the N-terminal 95-kDa fragment. These putative nucleotide-binding sequences include amino acids 699–704, 701–706, 1081–1084 and 1195–1200, which are conserved among the three RyR isoforms. Located next to the N-terminal disease hotspot region in RyR1, these sequences may communicate the effects of ATP-binding to channel function by tuning conformational motions within the neighboring cytoplasmic regulatory domains. Two other labeled fragments lack ATP-binding consensus motifs and may form non-canonical ATP-binding sites. Based on domain topology in the 3D structure of RyR1 it is also conceivable that the identified ATP-binding regions, despite their wide separation in the primary sequence, may actually constitute the same non-contiguous ATP-binding pocket within the channel tetramer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号