首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3714篇
  免费   241篇
  国内免费   5篇
  2024年   2篇
  2023年   14篇
  2022年   34篇
  2021年   84篇
  2020年   38篇
  2019年   60篇
  2018年   91篇
  2017年   67篇
  2016年   114篇
  2015年   167篇
  2014年   191篇
  2013年   244篇
  2012年   301篇
  2011年   328篇
  2010年   206篇
  2009年   163篇
  2008年   241篇
  2007年   265篇
  2006年   263篇
  2005年   241篇
  2004年   222篇
  2003年   184篇
  2002年   200篇
  2001年   26篇
  2000年   10篇
  1999年   22篇
  1998年   29篇
  1997年   18篇
  1996年   17篇
  1995年   13篇
  1994年   14篇
  1993年   13篇
  1992年   7篇
  1991年   11篇
  1990年   8篇
  1989年   2篇
  1988年   4篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1983年   3篇
  1982年   5篇
  1981年   4篇
  1980年   2篇
  1979年   3篇
  1978年   4篇
  1976年   3篇
  1974年   3篇
  1972年   3篇
  1965年   2篇
排序方式: 共有3960条查询结果,搜索用时 15 毫秒
81.
82.
Matrix metalloproteinases (MMPs) are zinc dependent endopeptidases that can be released from neurons in an activity dependent manner to play a role in varied forms of learning and memory. MMP inhibitors impair hippocampal long term potentiation (LTP), spatial memory, and behavioral correlates of drug addiction. Since MMPs are thought to influence LTP through a β1 integrin dependent mechanism, it has been suggested that these enzymes cleave specific substrates to generate integrin binding ligands. In previously published work, we have shown that neuronal activity stimulates rapid MMP dependent shedding of intercellular adhesion molecule-5 (ICAM-5), a synaptic adhesion molecule expressed on dendrites of the telencephalon. We have also shown that the ICAM-5 ectodomain can interact with β1 integrins to stimulate integrin dependent phosphorylation of cofilin, an event that occurs with dendritic spine maturation and LTP. In the current study, we investigate the potential for the ICAM-5 ectodomain to stimulate changes in α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor (AMPAR) dependent glutamatergic transmission. Single cell recordings show that the ICAM-5 ectodomain stimulates an increase in the frequency, but not the amplitude, of AMPA mini excitatory post synaptic currents (mEPSCs). With biotinylation and precipitation assays, we also show that the ICAM-5 ectodomain stimulates an increase in membrane levels of GluA1, but not GluA2, AMPAR subunits. In addition, we observe an ICAM-5 associated increase in GluA1 phosphorylation at serine 845. Concomitantly, ICAM-5 affects an increase in GluA1 surface staining along dendrites without affecting an increase in dendritic spine number. Together these data are consistent with the possibility that soluble ICAM-5 increases glutamatergic transmission and that post-synaptic changes, including increased phosphorylation and dendritic insertion of GluA1, could contribute. We suggest that future studies are warranted to determine whether ICAM-5 is one of a select group of synaptic CAMs whose shedding contributes to MMP dependent effects on learning and memory.  相似文献   
83.
Melatonin is a natural mammalian hormone that plays an important role in regulating the circadian cycle in humans. It is a clinically effective drug exhibiting positive effects as a sleep aid and a powerful antioxidant used as a dietary supplement. Commercial melatonin production is predominantly performed by complex chemical synthesis. In this study, we demonstrate microbial production of melatonin and related compounds, such as serotonin and N‐acetylserotonin. We generated Saccharomyces cerevisiae strains that comprise heterologous genes encoding one or more variants of an L‐tryptophan hydroxylase, a 5‐hydroxy‐L‐tryptophan decarboxylase, a serotonin acetyltransferase, an acetylserotonin O‐methyltransferase, and means for providing the cofactor tetrahydrobiopterin via heterologous biosynthesis and recycling pathways. We thereby achieved de novo melatonin biosynthesis from glucose. We furthermore accomplished increased product titers by altering expression levels of selected pathway enzymes and boosting co‐factor supply. The final yeast strain produced melatonin at a titer of 14.50 ± 0.57 mg L?1 in a 76h fermentation using simulated fed‐batch medium with glucose as sole carbon source. Our study lays the basis for further developing a yeast cell factory for biological production of melatonin.  相似文献   
84.
85.
86.
Protein misfolding, aggregation and deposition in the brain, in the form of amyloid, are implicated in the etiology of several neurodegenerative disorders, such as Alzheimer’s, Parkinson’s and prion diseases. Drugs available on the market reduce the symptoms, but they are not a cure. Therefore, it is urgent to identify promising targets and develop effective drugs. Preservation of protein native conformation and/or inhibition of protein aggregation seem pertinent targets for drug development. Several studies have shown that organic solutes, produced by extremophilic microorganisms in response to osmotic and/or heat stress, prevent denaturation and aggregation of model proteins. Among these stress solutes, mannosylglycerate, mannosylglyceramide, di-myo-inositol phosphate, diglycerol phosphate and ectoine are effective in preventing amyloid formation by Alzheimer’s Aβ peptide and/or α-synuclein in vitro. Moreover, mannosylglycerate is a potent inhibitor of Aβ and α-synuclein aggregation in living cells, and mannosylglyceramide and ectoine inhibit aggregation and reduce prion peptide-induced toxicity in human cells. This review focuses on the efficacy of stress solutes from hyper/thermophiles and ectoines to prevent amyloid formation in vitro and in vivo and their potential application in drug development against protein misfolding diseases. Current and envisaged applications of these extremolytes in neurodegenerative diseases and healthcare will also be addressed.  相似文献   
87.
The involvement of ethylene in fruit ripening is well documented, though knowledge regarding the crosstalk between ethylene and other hormones in ripening is lacking. We discovered that AUXIN RESPONSE FACTOR 2A (ARF2A), a recognized auxin signaling component, functions in the control of ripening. ARF2A expression is ripening regulated and reduced in the rin, nor and nr ripening mutants. It is also responsive to exogenous application of ethylene, auxin and abscisic acid (ABA). Over-expressing ARF2A in tomato resulted in blotchy ripening in which certain fruit regions turn red and possess accelerated ripening. ARF2A over-expressing fruit displayed early ethylene emission and ethylene signaling inhibition delayed their ripening phenotype, suggesting ethylene dependency. Both green and red fruit regions showed the induction of ethylene signaling components and master regulators of ripening. Comprehensive hormone profiling revealed that altered ARF2A expression in fruit significantly modified abscisates, cytokinins and salicylic acid while gibberellic acid and auxin metabolites were unaffected. Silencing of ARF2A further validated these observations as reducing ARF2A expression let to retarded fruit ripening, parthenocarpy and a disturbed hormonal profile. Finally, we show that ARF2A both homodimerizes and interacts with the ABA STRESS RIPENING (ASR1) protein, suggesting that ASR1 might be linking ABA and ethylene-dependent ripening. These results revealed that ARF2A interconnects signals of ethylene and additional hormones to co-ordinate the capacity of fruit tissue to initiate the complex ripening process.  相似文献   
88.
89.
Abstract

The article dwells upon identifying the effect of cadmium on the roots of beetroot. The exposure effects of various concentrations of cadmium were studied at different levels of the plant organization (tissue pieces, organelles, membrane vesicles). The effect was noted only at a concentration of 100?μm. The negative effect of cadmium on the roots tissues of beetroot appeared with an increase in permeability and a decrease in the stability of cell membranes due to a change in the composition of fatty acids of membrane lipids and an increase in oxidation processes. The effect of cadmium in model experiments on the activity of the proton pumps of the vacuolar membrane has been evaluated. The pumps provide for the transport of heavy metals into the vacuole, which is one of the effective mechanisms for phytoremediation. The influence of cadmium in model experiments on the activity of the proton pump of a vacuolar membrane was evaluated. Under the influence of cadmium, a decrease in the activity of V-ATPase was observed, while the activity of V-PPase did not change. The results obtained complement our understanding of the damaging effects that occur in plant cells under cadmium stress.  相似文献   
90.
Striped hamsters (Cricetulus barabensis sensu lato) represent a complex of chromosomally distinct allopatric lineages/taxa of either species or subspecies rank. They are widely distributed across the steppes of eastern and central Palearctic. Phylogenetic analysis of cytochrome b gene sequences based on 496 specimens from 112 localities revealed five well‐supported lineages divergent at 2%–4%. Two of them correspond to “griseus” (2n = 22) and “pseudogriseus” (2n = 24) karyomorphs and are placed as sister taxa. The “barabensis” (2n = 20) karyomorph is represented by three other branches and appears non‐monophyletic. All mtDNA lineages are distributed allopatrically or parapatrically; no indications of gene flow between populations of different chromosomal races were found. The results of the molecular clock analysis suggest that the main lineages diverged in the late Middle Pleistocene. The inferred evolutionary scenario implies that the common ancestor of the recent lineages belonged to the 2n = 20 karyomorph and originated in the eastern part of the contemporary range.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号