首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3576篇
  免费   241篇
  国内免费   5篇
  2024年   2篇
  2023年   14篇
  2022年   43篇
  2021年   84篇
  2020年   37篇
  2019年   59篇
  2018年   90篇
  2017年   63篇
  2016年   110篇
  2015年   166篇
  2014年   189篇
  2013年   240篇
  2012年   295篇
  2011年   327篇
  2010年   202篇
  2009年   162篇
  2008年   228篇
  2007年   254篇
  2006年   253篇
  2005年   236篇
  2004年   208篇
  2003年   165篇
  2002年   194篇
  2001年   21篇
  2000年   7篇
  1999年   18篇
  1998年   28篇
  1997年   18篇
  1996年   17篇
  1995年   13篇
  1994年   14篇
  1993年   13篇
  1992年   7篇
  1991年   7篇
  1990年   5篇
  1988年   1篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1982年   3篇
  1981年   4篇
  1980年   2篇
  1979年   2篇
  1978年   4篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有3822条查询结果,搜索用时 328 毫秒
961.
The icm/dot genes in Legionella pneumophila are essential for the ability of the bacteria to survive within macrophages in lung infections such as Legionnaires' disease, or amoebae in nature. The 22 genes of the complex, thought to encode a transport apparatus for transfer of effector molecules into the host cell cytoplasm, are located in two chromosomal loci. We demonstrate that these genes are present in all the L. pneumophila strains examined herein, but display a wide range of sequence variation among the different strains, none of which are clearly associated with virulence potential. The strains fall within seven phylogenetic groups, but discrepancies among the gene trees indicate a complicated evolutionary history for the icm/dot loci, with perhaps two independent gene acquisition events and subsequent genomic rearrangements. Significant findings include a probable t-SNARE domain in IcmG that may indicate a direct role for this putative inner membrane protein in altering the host's membrane fusion machinery, a potential functional domain in the central hydrophobic portion of IcmK that may allow it to participate in forming the pore of the secretion complex, and strict conservation of the amino acid physicochemical characteristics in the IcmP region corresponding to the trbA domain that could play a role in molecular transfer.  相似文献   
962.
Fetal malnutrition is associated with development of impaired glucose tolerance, diabetes and hypertension in later life in humans and several mammalian species. The mechanisms that underlie this phenomenon of fetal programming are unknown. We hypothesize that adverse effects in utero and early life may influence the basal expression levels of certain genes such that they are re-set with long-term consequences for the organism. An excellent candidate mechanism for this re-setting process is DNA methylation, since post-natal methylation patterns are largely established in utero. We have sought to test this hypothesis by investigating the glucokinase gene (Gck) in rat offspring programmed using a maternal low protein diet model (MLP). Northern blot reveals that fasting levels of Gck expression are reduced after programming, although this distinction disappears after feeding. Bisulphite sequencing of the hepatic Gck promoter indicates a complete absence of methylation at the 12 CpG sites studied in controls and MLP animals. Non-expressing cardiac tissue also showed no DNA methylation in this region, whereas brain and all fetal tissues were fully methylated. These findings are not consistent with the hypothesis that programming results from differential methylation of Gck. However, it remains possible that programming may influence methylation patterns in Gck at a distance from the promoter, or in genes encoding factors that regulate basal Gck expression.  相似文献   
963.
We describe or redescribe species of Hypocrea/Trichoderma (Ascomycetes, Hypocreales) having hyaline ascospores and pachybasium-like conidiophores. Teleomorphs are reported for Trichoderma minutisporum (Hypocrea minutispora sp. nov.) and T. polysporum (H. pachybasioides). Hypocrea pilulifera/T. piluliferum is redescribed. Trichoderma croceum is synonymized with T. polysporum. The new species H. parapilulifera, H. stellata and H. lacuwombatensis are described. All of these species fall within the morphological concept of Trichoderma sect. Pachybasium and within the phylogenetic group pachybasium B5 of Kullnig-Gradinger et al (2002). Parsimony analysis of nucleotide sequences from three unlinked loci-ITS1 and 2, endochitinase (ech42) and translation elongation factor 1-alpha (tef1)-detects two distinct phylogenetic lineages within the group pachybasium B5. One comprises H. pachybasioides/T. polysporum, H. pilulifera/T. piluliferum, H. parapilulifera and H. stellata; this group, the "polysporum" lineage, is characterized by having conidia that are white in mass and is the only lineage within Hypocrea characterized by such conidia. The second group includes the green conidial T. minutisporum and H. lacuwombatensis. The partition homogeneity test reveals significant recombination within the "polysporum" lineage but not within the "minutisporum" lineage.  相似文献   
964.
A major biologic role of the ubiquitous mitochondrial P450 enzyme CYP27A1 is the generation of ligands such as 27-hydroxycholesterol and 3 beta-hydroxy-5-cholestenoic acid, which regulate the expression of nuclear receptors that govern many aspects of cholesterol homeostasis. We now report that sterol intermediates in cholesterol synthesis, beginning with the initial post-cyclization sterol, lanosterol, continuing with zymosterol, and ending with desmosterol are also substrates for the enzyme. Using the human enzyme expressed in Escherichia coli, we characterized the retention times and major mass fragments of these novel metabolites. Although sequestration of the enzyme in the inner mitochondrial membrane and normal subcellular organization probably greatly restrict the proportion of these and other intermediates in cholesterol synthesis that undergo side chain oxidation, disruption of compartmentalization can bypass cholesterol as the end product and give rise to potent ligands that further modify gene expression.  相似文献   
965.
The formation of reactive oxygen metabolites in haemolymph of Galleria mellonella larvae was studied by ESR spectroscopy. The inhibition of the production of the reactive oxygen metabolites of DOPA in haemolymph under the action of fungal infection was shown using spin trap 1-hydroxy-3-carboxy-pyrrolidine. This inhibition correlated with decrease of phenoloxidase activity in haemolymph of infected insects. Simultaneously, the decrease of production of DOPA-semiquinone was detected using method of spin stabilization by diamagnetic metal ions. Moreover, it was shown that the formation of DOPA-quinone was slowed down in haemolymph of infected insects. Our results suggest that the DOPA-derived quinones/semiquinones may be involved in immune response of insects as part of its defense mechanism.  相似文献   
966.
The enzymatic cleavage of double-stranded (ds) RNA is an obligatory step in the maturation and decay of many cellular and viral RNAs. The primary agents of dsRNA processing are members of the ribonuclease III (RNase III) superfamily, which are highly conserved in eukaryotic and bacterial cells. Escherichia coli RNase III participates in the maturation of the ribosomal RNAs and in the maturation and decay of cellular and phage mRNAs. E. coli RNase III-dependent cleavage events can regulate gene expression by controlling mRNA stability and translational activity. RNase III recognizes its substrates and selects the scissile phosphodiester(s) by recognizing specific RNA sequence and structural elements, termed reactivity epitopes. Some E. coli RNase III substrates contain an internal loop, in which is located the single scissile phosphodiester. The specific features of the internal loop that establish the pattern of single-strand cleavage are not known. A mutational analysis of the asymmetric [4 nt/5 nt] internal loop of the phage T7 R1.1 substrate reveals that cleavage reactivity is largely independent of internal loop sequence. Instead, the [4/5] asymmetry per se is the primary determinant of cleavage of a single bond within the 5 nt strand of the internal loop. The T7 R1.1 internal loop lacks elements of local tertiary structure, as revealed by sensitivity to cleavage by terbium ion and by the ability of the internal loop to destabilize a small model duplex. The internal loop functions as a discrete structural element in that the pattern of cleavage can be controlled by the specific type of asymmetry. The implications of these findings are discussed in light of RNase III substrate function as a gene regulatory element.  相似文献   
967.
Smirnova IN  Kaback HR 《Biochemistry》2003,42(10):3025-3031
Lactose permease with Cys154 --> Gly (helix V) binds substrate with high affinity but catalyzes little or no transport. The purified, detergent-solubilized mutant protein exhibits much greater thermal stability than the wild type and little tendency to aggregate. Stabilization is also observed in vivo with an unstable mutant that is expressed at significantly higher levels when the Cys154 --> Gly mutation is introduced. In addition, ligand-induced conformational changes are markedly reduced or abolished by the Cys154 --> Gly mutation: (i) Although the fluorescence of purified single Trp33 (helix I) permease is enhanced by ligand binding, introduction of the Cys154 --> Gly mutation abolishes the effect. (ii) The rate of 2-(4'-maleimidylanilino)naphthalene-6-sulfonic acid (MIANS) labeling of permease with a single Cys residue in place of Val331 (helix X) is increased in the presence of ligand but reduced when the Cys154 --> Gly mutation is present. (iii) Fluorescence emission intensity of MIANS-labeled single Cys331 permease is enhanced and blue shifted in the Cys154 --> Gly mutant background, indicating that the latter mutation causes position 331 to become exposed to a less polar environment. The results indicate that the Cys154 --> Gly mutation causes a more compact structure and decreased conformational flexibility, an alteration that specifically blocks the structural changes necessary for substrate translocation with little or no effect on ligand binding.  相似文献   
968.
In a biomembrane modeling system, reverse micelles, somatic ACE forms dimers via carbohydrate-mediated interaction, providing evidence for the existence of a carbohydrate-recognizing domain on the ACE molecule. We localized this putative region on the N-domain of ACE using monoclonal antibodies (mAbs) to seven different epitopes of ACE. Two mAbs, 9B9 and 3G8, directed to distinct, but overlapping, epitopes of the N-domain of ACE shielded the CRD. Only "simple" ACE-antibody complexes were found in the system. Five mAbs allowed the formation of "double" antibody-ACE-ACE-antibody complexes via carbohydrate-mediated interactions. The results were confirmed using the ACE N- and C-domains. Testicular ACE was unable to form carbohydrate-mediated ACE dimers in the reverse micelles, while the N-domain of ACE, obtained by limited proteolysis of the parent full-length ACE, retained the ability to form dimers. Furthermore, mAb 3G8, which blocked ACE dimerization in micelles, significantly inhibited ACE shedding from the surface of ACE-expressing cells. Galactose prevented ACE dimerization in reverse micelles and also affected antibody-induced ACE shedding in an epitope-dependent manner. Restricted glycosylation of somatic ACE, obtained by the treatment of CHO-ACE cells with the glucosidase inhibitor N-butyldeoxynojirimycin, significantly increased the rate of basal ACE shedding and altered antibody-induced ACE shedding. A chemical cross-linking approach was used to show that ACE is present (at least in part) as noncovalently linked dimers on the surface of CHO-ACE cells. These results suggest a possible link between putative ACE dimerization on the cell surface and the proteolytic cleavage (shedding) of ACE.  相似文献   
969.
We have mapped the domains of lipid-free apoA-I that promote cAMP-dependent and cAMP-independent cholesterol and phospholipid efflux. The cAMP-dependent lipid efflux in J774 mouse macrophages was decreased by approximately 80-92% by apoA-I[delta(185-243)], only by 15% by apoA-I[delta(1-41)] or apoA-I[delta(1-59)], and was restored to 75-80% of the wild-type apoA-I control value by double deletion mutants apoA-I[delta(1-41)delta(185-243)] and apoA-I[delta(1-59)delta(185-243)]. Similar results were obtained in HEK293 cells transfected with an ATP-binding cassette transporter A1 (ABCA1) expression plasmid. The double deletion mutant of apoA-I had reduced thermal and chemical stability compared with wild-type apoA-I. Sequential carboxyl-terminal deletions showed that cAMP-dependent cholesterol efflux was diminished in all the mutants tested, except the apoA-I[delta(232-243)] which had normal cholesterol efflux. In cAMP-untreated or in mock-transfected cells, cholesterol efflux was not affected by the amino-terminal deletions, but decreased by 30-40% and 50-65% by the carboxyl-terminal and double deletions, respectively. After adenovirus-mediated gene transfer in apoA-I-deficient mice, wild-type apoA-I and apoA-I[delta(1-41)] formed spherical high density lipoprotein (HDL) particles, whereas apoA-I[delta(1-41)delta(185-243)] formed discoidal HDL. The findings suggest that although the central helices of apoA-I alone can promote ABCA1-mediated lipid efflux, residues 220-231 are necessary to allow functional interactions between the full-length apoA-I and ABCA1 that are required for lipid efflux and HDL biogenesis.  相似文献   
970.
Based on structure-activity relationships of the angiostatic beta-sheet-forming peptide anginex, we have designed a mimetic, 6DBF7, which inhibits angiogenesis and tumor growth in mice. 6DBF7 is composed of a beta-sheet-inducing dibenzofuran (DBF)-turn mimetic and two short key amino acid sequences from anginex. This novel antiangiogenic molecule is more effective in vivo than parent anginex. In a mouse xenograft model for ovarian carcinoma, 6DBF7 is observed to reduce tumor growth by up to 80%. It is suggested that the activity is based on antiangiogenesis, because in vitro tube formation is inhibited, and because treatment of tumor-bearing mice led to a significant reduction in microvessel density within the tumor. This partial peptide mimetic is the first endothelial cell-specific molecule designed as a substitute for an angiostatic inhibitory peptide.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号