首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3644篇
  免费   252篇
  国内免费   5篇
  3901篇
  2024年   2篇
  2023年   14篇
  2022年   52篇
  2021年   85篇
  2020年   37篇
  2019年   59篇
  2018年   90篇
  2017年   64篇
  2016年   112篇
  2015年   171篇
  2014年   191篇
  2013年   244篇
  2012年   297篇
  2011年   328篇
  2010年   206篇
  2009年   163篇
  2008年   231篇
  2007年   258篇
  2006年   256篇
  2005年   237篇
  2004年   210篇
  2003年   168篇
  2002年   196篇
  2001年   26篇
  2000年   10篇
  1999年   20篇
  1998年   29篇
  1997年   19篇
  1996年   19篇
  1995年   15篇
  1994年   15篇
  1993年   13篇
  1992年   7篇
  1991年   9篇
  1990年   7篇
  1988年   2篇
  1986年   5篇
  1985年   2篇
  1984年   3篇
  1983年   3篇
  1982年   6篇
  1981年   4篇
  1980年   2篇
  1979年   3篇
  1978年   4篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有3901条查询结果,搜索用时 0 毫秒
81.
Subtilisin 72 was immobilized on cryogel of poly(vinyl alcohol), the macroporous carrier prepared by the freeze-thaw-treatment of concentrated aqueous solution of the polymer. The obtained biocatalyst was active and stable in aqueous, aqueous-organic, as well as in low water media. The stability of immobilized biocatalyst was substantially higher than that of native enzyme in all mixtures especially in aqueous buffer containing 5–8 M Urea and in acetonitrile/60–90%DMF mixtures. The ability of native and immobilized subtilisin to catalyze peptide bond formation between Z-Ala-Ala-Leu-OMe and Phe-pNA was studied in non-aqueous media. Considerable enzyme stabilization in acetonitrile/90%DMF mixture, induced by the immobilization, resulted in higher product yield (57%) than in case of native subtilisin suspension (32%). Detailed study of synthesis reaction revealed that notable increase in product yield could be reached using increase in both substrate concentrations up to 200 mM.  相似文献   
82.
Membrane lipid glycosyltransferases (GTs) in plants are enzymes that regulate the levels of the non-bilayer prone monogalactosyldiacylglycerol (GalDAG) and the bilayer-forming digalactosyldiacylglycerol (GalGalDAG). The relative amounts of these lipids affect membrane properties such as curvature and lateral stress. During phosphate shortage, phosphate is rescued by replacing phospholipids with GalGalDAG. The glycolsyltransferase enzyme in Arabidopsis thaliana responsible for this, atDGD2, senses the bilayer properties and interacts with the membrane in a monotopic manner. To understand the parameters that govern this interaction, we have identified several possible lipid-interacting sites in the protein and studied these by biophysical techniques. We have developed a multivariate discrimination algorithm that correctly predicts the regions in the protein that interact with lipids, and the interactions were confirmed by a variety of biophysical techniques. We show by bioinformatic methods and circular dichroism (CD), fluorescence, and NMR spectroscopic techniques that two regions are prone to interact with lipids in a surface-charge dependent way. Both of these regions contain Trp residues, but here charge appears to be the dominating feature governing the interaction. The sequence corresponding to residues 227-245 in the protein is seen to be able to adapt its structure according to the surface-charge density of a bilayer. All results indicate that this region interacts specifically with lipid molecules and that a second region in the protein, corresponding to residues 130-148, also interacts with the bilayer. On the basis of this, and sequence charge features in the immediate environment of S227-245, a response model for the interaction of atDGD2 with the membrane bilayer interface is proposed.  相似文献   
83.
Hantaviruses predominantly infect human endothelial cells and, in the absence of cell lysis, cause two diseases resulting from increased vascular permeability. Andes virus (ANDV) causes a highly lethal acute pulmonary edema termed hantavirus pulmonary syndrome (HPS). ANDV infection enhances the permeability of endothelial cells in response to vascular endothelial growth factor (VEGF) by increasing signaling responses directed by the VEGFR2-Src-VE-cadherin pathway, which directs adherens junction (AJ) disassembly. Here we demonstrate that inhibiting pathway-specific VEGFR2 and Src family kinases (SFKs) blocks ANDV-induced endothelial cell permeability. Small interfering RNA (siRNA) knockdown of Src within ANDV-infected endothelial cells resulted in an ~70% decrease in endothelial cell permeability compared to that for siRNA controls. This finding suggested that existing FDA-approved small-molecule kinase inhibitors might similarly block ANDV-induced permeability. The VEGFR2 kinase inhibitor pazopanib as well as SFK inhibitors dasatinib, PP1, bosutinib, and Src inhibitor 1 dramatically inhibited ANDV-induced endothelial cell permeability. Consistent with their kinase-inhibitory concentrations, dasatinib, PP1, and pazopanib inhibited ANDV-induced permeability at 1, 10, and 100 nanomolar 50% inhibitory concentrations (IC(50)s), respectively. We further demonstrated that dasatinib and pazopanib blocked VE-cadherin dissociation from the AJs of ANDV-infected endothelial cells by >90%. These findings indicate that VEGFR2 and Src kinases are potential targets for therapeutically reducing ANDV-induced endothelial cell permeability and, as a result, capillary permeability during HPS. Since the functions of VEGFR2 and SFK inhibitors are already well defined and FDA approved for clinical use, these findings rationalize their therapeutic evaluation for efficacy in reducing HPS disease. Endothelial cell barrier functions are disrupted by a number of viruses that cause hemorrhagic, edematous, or neurologic disease, and as a result, our findings suggest that VEGFR2 and SFK inhibitors should be considered for regulating endothelial cell barrier functions altered by additional viral pathogens.  相似文献   
84.
The Escherichia coli inducible lysine decarboxylase, LdcI/CadA, together with the inner-membrane lysine-cadaverine antiporter, CadB, provide cells with protection against mild acidic conditions (pH~5). To gain a better understanding of the molecular processes underlying the acid stress response, the X-ray crystal structure of LdcI was determined. The structure revealed that the protein is an oligomer of five dimers that associate to form a decamer. Surprisingly, LdcI was found to co-crystallize with the stringent response effector molecule ppGpp, also known as the alarmone, with 10 ppGpp molecules in the decamer. ppGpp is known to mediate the stringent response, which occurs in response to nutrient deprivation. The alarmone strongly inhibited LdcI enzymatic activity. This inhibition is important for modulating the consumption of lysine in cells during acid stress under nutrient limiting conditions. Hence, our data provide direct evidence for a link between the bacterial acid stress and stringent responses.  相似文献   
85.
The transmissible agent of prion disease consists of a prion protein in its abnormal, β-sheet rich state (PrP(Sc)), which is capable of replicating itself according to the template-assisted mechanism. This mechanism postulates that the folding pattern of a newly recruited polypeptide chain accurately reproduces that of a PrP(Sc) template. Here we report that authentic PrP(Sc) and transmissible prion disease can be generated de novo in wild type animals by recombinant PrP (rPrP) amyloid fibrils, which are structurally different from PrP(Sc) and lack any detectable PrP(Sc) particles. When induced by rPrP fibrils, a long silent stage that involved two serial passages preceded development of the clinical disease. Once emerged, the prion disease was characterized by unique clinical, neuropathological, and biochemical features. The long silent stage to the disease was accompanied by significant transformation in neuropathological properties and biochemical features of the proteinase K-resistant PrP material (PrPres) before authentic PrP(Sc) evolved. The current work illustrates that transmissible prion diseases can be induced by PrP structures different from that of authentic PrP(Sc) and suggests that a new mechanism different from the classical templating exists. This new mechanism designated as "deformed templating" postulates that a change in the PrP folding pattern from the one present in rPrP fibrils to an alternative specific for PrP(Sc) can occur. The current work provides important new insight into the mechanisms underlying genesis of the transmissible protein states and has numerous implications for understanding the etiology of neurodegenerative diseases.  相似文献   
86.
Glioblastoma multiforme (GBM) is the most common and malignant form of glioma with high mortality and no cure. Many human cancers maintain a complex inflammatory program triggering rapid recruitment of inflammatory cells, including mast cells (MCs), to the tumor site. However, the potential contribution of MCs in glioma has not been addressed previously. Here we report for the first time that MCs infiltrate KRas+Akt-induced gliomas, using the RCAS/TV-a system, where KRas and Akt are transduced by RCAS into the brains of neonatal Gtv-a- or Ntv-a transgenic mice lacking Ink4a or Arf. The most abundant MC infiltration was observed in high-grade gliomas of Arf-/- mice. MC accumulation could be localized to the vicinity of glioma-associated vessels but also within the tumor mass. Importantly, proliferating MCs were detected, suggesting that the MC accumulation was caused by local expansion of the MC population. In line with these findings, strong expression of stem cell factor (SCF), i.e. the main MC growth factor, was detected, in particular around tumor blood vessels. Further, glioma cells expressed the MC chemotaxin CXCL12 and MCs expressed the corresponding receptor, i.e. CXCR4, suggesting that MCs could be attracted to the tumor through the CXCL12/CXCR4 axis. Supporting a role for MCs in glioma, strong MC infiltration was detected in human glioma, where GBMs contained significantly higher MC numbers than grade II tumors did. Moreover, human GBMs were positive for CXCL12 and the infiltrating MCs were positive for CXCR4. In conclusion, we provide the first evidence for a role for MCs in glioma.  相似文献   
87.

Objective and Methods

A long-term observational study was conducted in Samara, Russia to assess the survival and risk factors for death of a cohort of non-multidrug resistant tuberculosis (non-MDRTB) and multidrug resistant tuberculosis (MDRTB) civilian and prison patients and a civilian extensive drug-resistant tuberculosis (XDRTB) cohort.

Results

MDRTB and XDRTB rates of 54.8% and 11.1% were identified in the region. Half (50%) of MDRTB patients and the majority of non-MDRTB patients (71%) were still alive at 5 years. Over half (58%) of the patients died within two years of establishing a diagnosis of XDRTB. In the multivariate analysis, retreatment (HR = 1.61, 95%CI 1.04, 2.49) and MDRTB (HR = 1.67, 95%CI 1.17, 2.39) were significantly associated with death within the non-MDR/MDRTB cohort. The effect of age on survival was relatively small (HR = 1.01, 95%CI 1.00, 1.02). No specific factor affected survival of XDRTB patients although median survival time for HIV-infected versus HIV-negative patients from this group was shorter (185 versus 496 days). The majority of MDRTB and XDRTB strains (84% and 92% respectively) strains belonged to the Beijing family. Mutations in the rpoB (codon 531 in 81/92; 88.8%), katG (mutation S315T in 91/92, 98.9%) and inhA genes accounted for most rifampin and isoniazid resistance respectively, mutations in the QRDR region of gyrA for most fluroquinolone resistance (68/92; 73.5%).

Conclusions

Alarmingly high rates of XDRTB exist. Previous TB treatment cycles and MDR were significant risk factors for mortality. XDRTB patients'' survival is short especially for HIV-infected patients. Beijing family strains comprise the majority of drug-resistant strains.  相似文献   
88.
Photosynthesis rate (An) becomes unstable above a threshold temperature, and the recovery upon return to low temperature varies because of reasons not fully understood. We investigated responses of An, dark respiration and chlorophyll fluorescence to supraoptimal temperatures of varying duration and kinetics in Phaseolus vulgaris asking whether the instability of photosynthesis under severe heat stress is associated with cellular damage. Cellular damage was assessed by Evans blue penetration (enhanced membrane permeability) and by H2O2 generation [3,3′‐diaminobenzidine 4HCl (DAB)‐staining]. Critical temperature for dark fluorescence (F0) rise (TF) was at 46–48 °C, and a burst of respiration was observed near TF. However, An was strongly inhibited already before TF was reached. Membrane permeability increased with temperature according to a switch‐type response, with enhanced permeability observed above 48 °C. Experiments with varying heat pulse lengths and intensities underscored the threshold‐type loss of photosynthetic function, and indicated that the degree of photosynthetic deterioration and cellular damage depended on accumulated heat‐dose. Beyond the ‘point of no return’, propagation of cellular damage and reduction of photosynthesis continued upon transfer to lower temperatures and photosynthetic recovery was slow or absent. We conclude that instability of photosynthesis under severe heat stress is associated with time‐dependent propagation of cellular lesions.  相似文献   
89.
We tested the hypotheses that responses to the mountain pine beetle fungal associate Grosmannia clavigera will differ between the evolutionarily co‐evolved host lodgepole pine (Pinus contorta var. latifolia) and the naïve host jack pine (Pinus banksiana) and that these responses will be influenced by water availability. G. clavigera inoculation resulted in more rapid stem lesion development in lodgepole than in jack pine; water deficit delayed lesion development in both species. Decreased hydraulic conductivity was observed in inoculated lodgepole pine seedlings, likely because of tracheid occlusion by fungal hyphae and/or metabolite accumulation. Drought but not inoculation significantly impacted bark abscisic acid levels. Jasmonic and salicylic acid were implicated in local and systemic responses of both species to G. clavigera, with salicylic acid appearing to play a greater role in jack pine response to G. clavigera than lodgepole pine. Water deficit increased constitutive levels and/or attenuated induced responses to G. clavigera for several monoterpenes in lodgepole but not jack pine. Instead, inoculation of well‐watered but not water deficit jack pine resulted in a greater number of xylem resin ducts. These findings reveal mechanisms underlying differences in G. clavigera‐induced responses between lodgepole and jack pine hosts, and how water availability modulates these responses.  相似文献   
90.
Asialoglycoprotein receptor (ASGP-R) is a promising biological target for drug delivery into hepatoma cells. Nevertheless, there are only few examples of small-molecule conjugates of ASGP-R selective ligand equipped by a therapeutic agent for the treatment of hepatocellular carcinoma (HCC). In the present work, we describe a convenient and versatile synthetic approach to novel mono- and multivalent drug-conjugates containing N-acetyl-2-deoxy-2-aminogalactopyranose and anticancer drug – paclitaxel (PTX). Several molecules have demonstrated high affinity towards ASGP-R and good stability under physiological conditions, significant in vitro anticancer activity comparable to PTX, as well as good internalization via ASGP-R-mediated endocytosis. Therefore, the conjugates with the highest potency can be regarded as a promising therapeutic option against HCC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号