首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3583篇
  免费   242篇
  国内免费   5篇
  3830篇
  2024年   2篇
  2023年   14篇
  2022年   52篇
  2021年   84篇
  2020年   37篇
  2019年   59篇
  2018年   90篇
  2017年   63篇
  2016年   110篇
  2015年   166篇
  2014年   189篇
  2013年   240篇
  2012年   296篇
  2011年   326篇
  2010年   202篇
  2009年   163篇
  2008年   228篇
  2007年   253篇
  2006年   253篇
  2005年   235篇
  2004年   208篇
  2003年   165篇
  2002年   194篇
  2001年   21篇
  2000年   7篇
  1999年   18篇
  1998年   28篇
  1997年   18篇
  1996年   17篇
  1995年   13篇
  1994年   14篇
  1993年   13篇
  1992年   7篇
  1991年   7篇
  1990年   5篇
  1988年   1篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1982年   3篇
  1981年   4篇
  1980年   2篇
  1979年   2篇
  1978年   4篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有3830条查询结果,搜索用时 15 毫秒
71.
The insulin -23Hph and IGF2 Apa polymorphisms were genotyped in Romanian patients with T1DM (n = 204), T2DM (n = 215) or obesity (n = 200) and normoponderal healthy subjects (n = 750). The genotypes of both polymorphisms were distributed in concordance with Hardy-Weinberg equilibrium in all groups. The -23Hph AA genotype increased the risk for T1DM (OR: 3.22, 95%CI: 2.09-4.98, p < 0,0001), especially in patients without macroalbuminuria (OR: 4.32, 95%CI: 2.54-7.45, p < 0,0001). No other significant association between the alleles or genotypes of insulin -23Hph and IGF2 Apa and diabetes or obesity was identified.  相似文献   
72.
Phosphorylated and non-phosphorylated forms of the F0F1-ATPase subunit c from rat liver mitochondria (RLM) were purified and their effect on the opening of the permeability transition pore (mPTP) was investigated. Addition of dephosphorylated subunit c to RLM induced mitochondrial swelling, decreased the membrane potential and reduced the Ca2+ uptake capacity, which was prevented by cyclosporin A. The same effect was observed in the presence of storage subunit c purified from livers of sheep affected with ceroid lipofuscinosis. In black-lipid bilayer membranes subunit c increased the conductance due to formation of single channels with fast and slow kinetics. The dephosphorylated subunit c formed channels with slow kinetics, i.e. the open state being of significantly longer duration than in the case of channels formed by the phosphorylated form that had short life spans and fast kinetics. The channels formed were cation-selective more so with the phosphorylated form. Subunit c of rat liver mitochondria was able to bind Ca2+. Collectively, the data allowed us to suppose that subunit c F0F1-ATPase might be a structural/regulatory component of mPTP exerting its role in dependence on phosphorylation status.  相似文献   
73.
Deletion of Phe-508 (F508del) in the first nucleotide binding domain (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR) leads to defects in folding and channel gating. NMR data on human F508del NBD1 indicate that an H620Q mutant, shown to increase channel open probability, and the dual corrector/potentiator CFFT-001 similarly disrupt interactions between β-strands S3, S9, and S10 and the C-terminal helices H8 and H9, shifting a preexisting conformational equilibrium from helix to coil. CFFT-001 appears to interact with β-strands S3/S9/S10, consistent with docking simulations. Decreases in T(m) from differential scanning calorimetry with H620Q or CFFT-001 suggest direct compound binding to a less thermostable state of NBD1. We hypothesize that, in full-length CFTR, shifting the conformational equilibrium to reduce H8/H9 interactions with the uniquely conserved strands S9/S10 facilitates release of the regulatory region from the NBD dimerization interface to promote dimerization and thereby increase channel open probability. These studies enabled by our NMR assignments for F508del NBD1 provide a window into the conformational fluctuations within CFTR that may regulate function and contribute to folding energetics.  相似文献   
74.
ABSTRACT

A comparative analysis of lipid peroxidation processes and antioxidant defense system in Caucasian menopausal women with/without insomnia depending on the genotype of Clock 3111T/C gene polymorphism was performed. Two hundred and fourteen Caucasian menopausal women divided into control (without insomnia) and main group (with insomnia) were examined. Lipid peroxidation (conjugated dienes, thiobarbituric acid reactants) and antioxidant defense system parameters (?-tocopherol, retinol, reduced and oxidized glutathione, glutathione S-transferase, glutathione peroxidase, glutathione reductase, superoxide dismutase) were determined by spectrofluorophotometer and immunoenzymometric methods. Patients with insomnia carriers of the TT-genotype had a significantly higher thiobarbituric acid reactants level and glutathione peroxidase activity as compared to group with insomnia carriers of the minor 3111C-allele (p < .05). A comparative analysis of the parameters in the women of the main and control groups showed higher conjugated dienes, thiobarbituric acid reactants levels and lower retinol, reduced glutathione levels, glutathione reductase activity in women with insomnia carriers of the TT-genotype (p < .05). The carriers of the minor allele with insomnia had a higher conjugated dienes levels and lower glutathione peroxidase activity as compared to control (p < .05). Thus, lipid peroxidation and antioxidant system parameters in Caucasian menopausal women with insomnia depend on the Clock 3111T/C gene polymorphism.  相似文献   
75.
With the aim of uncovering all of the most basal variation in the northern Asian mitochondrial DNA (mtDNA) haplogroups, we have analyzed mtDNA control region and coding region sequence variation in 98 Altaian Kazakhs from southern Siberia and 149 Barghuts from Inner Mongolia, China. Both populations exhibit the prevalence of eastern Eurasian lineages accounting for 91.9% in Barghuts and 60.2% in Altaian Kazakhs. The strong affinity of Altaian Kazakhs and populations of northern and central Asia has been revealed, reflecting both influences of central Asian inhabitants and essential genetic interaction with the Altai region indigenous populations. Statistical analyses data demonstrate a close positioning of all Mongolic-speaking populations (Mongolians, Buryats, Khamnigans, Kalmyks as well as Barghuts studied here) and Turkic-speaking Sojots, thus suggesting their origin from a common maternal ancestral gene pool. In order to achieve a thorough coverage of DNA lineages revealed in the northern Asian matrilineal gene pool, we have completely sequenced the mtDNA of 55 samples representing haplogroups R11b, B4, B5, F2, M9, M10, M11, M13, N9a and R9c1, which were pinpointed from a massive collection (over 5000 individuals) of northern and eastern Asian, as well as European control region mtDNA sequences. Applying the newly updated mtDNA tree to the previously reported northern Asian and eastern Asian mtDNA data sets has resolved the status of the poorly classified mtDNA types and allowed us to obtain the coalescence age estimates of the nodes of interest using different calibrated rates. Our findings confirm our previous conclusion that northern Asian maternal gene pool consists of predominantly post-LGM components of eastern Asian ancestry, though some genetic lineages may have a pre-LGM/LGM origin.  相似文献   
76.
Pure nucleotide precursor pools are a prerequisite for high-fidelity DNA replication and the suppression of mutagenesis and carcinogenesis. ITPases are nucleoside triphosphate pyrophosphatases that clean the precursor pools of the non-canonical triphosphates of inosine and xanthine. The precise role of the human ITPase, encoded by the ITPA gene, is not clearly defined. ITPA is clinically important because a widespread polymorphism, 94C>A, leads to null ITPase activity in erythrocytes and is associated with an adverse reaction to thiopurine drugs. We studied the cellular function of ITPA in HeLa cells using the purine analog 6-N hydroxylaminopurine (HAP), whose triphosphate is also a substrate for ITPA. In this study, we demonstrate that ITPA knockdown sensitizes HeLa cells to HAP-induced DNA breaks and apoptosis. The HAP-induced DNA damage and cytotoxicity observed in ITPA knockdown cells are rescued by an overexpression of the yeast ITPase encoded by the HAM1 gene. We further show that ITPA knockdown results in elevated mutagenesis in response to HAP treatment. Our studies reveal the significance of ITPA in preventing base analog-induced apoptosis, DNA damage and mutagenesis in human cells. This implies that individuals with defective ITPase are predisposed to genome damage by impurities in nucleotide pools, which is drastically augmented by therapy with purine analogs. They are also at an elevated risk for degenerative diseases and cancer.  相似文献   
77.
Hantaviruses predominantly infect human endothelial cells and, in the absence of cell lysis, cause two diseases resulting from increased vascular permeability. Andes virus (ANDV) causes a highly lethal acute pulmonary edema termed hantavirus pulmonary syndrome (HPS). ANDV infection enhances the permeability of endothelial cells in response to vascular endothelial growth factor (VEGF) by increasing signaling responses directed by the VEGFR2-Src-VE-cadherin pathway, which directs adherens junction (AJ) disassembly. Here we demonstrate that inhibiting pathway-specific VEGFR2 and Src family kinases (SFKs) blocks ANDV-induced endothelial cell permeability. Small interfering RNA (siRNA) knockdown of Src within ANDV-infected endothelial cells resulted in an ~70% decrease in endothelial cell permeability compared to that for siRNA controls. This finding suggested that existing FDA-approved small-molecule kinase inhibitors might similarly block ANDV-induced permeability. The VEGFR2 kinase inhibitor pazopanib as well as SFK inhibitors dasatinib, PP1, bosutinib, and Src inhibitor 1 dramatically inhibited ANDV-induced endothelial cell permeability. Consistent with their kinase-inhibitory concentrations, dasatinib, PP1, and pazopanib inhibited ANDV-induced permeability at 1, 10, and 100 nanomolar 50% inhibitory concentrations (IC(50)s), respectively. We further demonstrated that dasatinib and pazopanib blocked VE-cadherin dissociation from the AJs of ANDV-infected endothelial cells by >90%. These findings indicate that VEGFR2 and Src kinases are potential targets for therapeutically reducing ANDV-induced endothelial cell permeability and, as a result, capillary permeability during HPS. Since the functions of VEGFR2 and SFK inhibitors are already well defined and FDA approved for clinical use, these findings rationalize their therapeutic evaluation for efficacy in reducing HPS disease. Endothelial cell barrier functions are disrupted by a number of viruses that cause hemorrhagic, edematous, or neurologic disease, and as a result, our findings suggest that VEGFR2 and SFK inhibitors should be considered for regulating endothelial cell barrier functions altered by additional viral pathogens.  相似文献   
78.

Background

The blood-brain barrier (BBB), blood-spinal cord barrier (BSCB), and blood-cerebrospinal fluid barrier (BCSFB) control cerebral/spinal cord homeostasis by selective transport of molecules and cells from the systemic compartment. In the spinal cord and brain of both ALS patients and animal models, infiltration of T-cell lymphocytes, monocyte-derived macrophages and dendritic cells, and IgG deposits have been observed that may have a critical role in motor neuron damage. Additionally, increased levels of albumin and IgG have been found in the cerebrospinal fluid in ALS patients. These findings suggest altered barrier permeability in ALS. Recently, we showed disruption of the BBB and BSCB in areas of motor neuron degeneration in the brain and spinal cord in G93A SOD1 mice modeling ALS at both early and late stages of disease using electron microscopy. Examination of capillary ultrastructure revealed endothelial cell degeneration, which, along with astrocyte alteration, compromised the BBB and BSCB. However, the effect of these alterations upon barrier function in ALS is still unclear. The aim of this study was to determine the functional competence of the BSCB in G93A mice at different stages of disease.

Methodology/Principal Findings

Evans Blue (EB) dye was intravenously injected into ALS mice at early or late stage disease. Vascular leakage and the condition of basement membranes, endothelial cells, and astrocytes were investigated in cervical and lumbar spinal cords using immunohistochemistry. Results showed EB leakage in spinal cord microvessels from all G93A mice, indicating dysfunction in endothelia and basement membranes and confirming our previous ultrastructural findings on BSCB disruption. Additionally, downregulation of Glut-1 and CD146 expressions in the endothelial cells of the BSCB were found which may relate to vascular leakage.

Conclusions/Significance

Results suggest that the BSCB is compromised in areas of motor neuron degeneration in ALS mice at both early and late stages of the disease.  相似文献   
79.
This study analyses the influence of the underwater light climate on the morphometric characteristics of the phytoplankton at the population and community levels. The differences in light conditions across the floodplain were mainly defined by the patchiness of floating macrophytes and humic acids concentration. A morphometric response at the community level to the underwater PAR was registered. Sites with strong light constraints were characterised by non-flagellated organisms or with a small proportion of unicellular flagellates. Short organisms (<10 μm) with a unit volume of less than 1,000 μm3 and a high surface:volume ratio (S/V >2) were the morphotypes related to poorly illuminated environments. Moreover, the organisms showed forms more slender under these limiting conditions. This pattern was different to that registered in well-illuminated sites where longer and larger organisms, with a smaller S/V and frequently flagellated, coexisted with the previously mentioned organisms. The autotrophic picoplankton, the smallest phytoplankton fraction, revealed lower abundances at sites with higher humic substances. Short term morphological changes were additionally studied for the dominant species by means of mesocosm experiments simulating different light climates. Intraspecific morphological plasticity was observed with respect to the filament length and the vacuolization of cells. Electronic Supplementary Material Supplementary material is available for this article at and is available to authorized users.  相似文献   
80.
Autoimmune diseases arise from the loss of tolerance to self, and because the etiologies of such diseases are largely unknown, symptomatic treatments rely on anti-inflammatory and analgesic agents. Tolerogenic treatments that can reverse disease are preferred, but again, often thwarted by not knowing the responsible auto-antigens (auto-Ags). Hence, a viable alternative to stimulating regulatory T cells (Tregs) is to induce bystander tolerance. Colonization factor antigen I (CFA/I) has been shown to evoke bystander immunity and to hasten Ag-specific Treg development independent of auto-Ag. To translate in treating human autoimmune diseases, the food-based Lactococcus was engineered to express CFA/I fimbriae, and Lactococcus-CFA/I fermented milk fed to arthritic mice proved highly efficacious. Protection occurred via CD39+ Tregs producing TGF-β and IL-10 to potently suppress TNF-α production and neutrophil influx into the joints. Thus, these data demonstrate the feasibility of oral nutraceuticals for treating arthritis, and potency of protection against arthritis was improved relative to that obtained with Salmonella-CFA/I.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号