首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4131篇
  免费   331篇
  国内免费   2篇
  4464篇
  2023年   24篇
  2022年   59篇
  2021年   108篇
  2020年   56篇
  2019年   74篇
  2018年   116篇
  2017年   84篇
  2016年   151篇
  2015年   198篇
  2014年   246篇
  2013年   321篇
  2012年   392篇
  2011年   334篇
  2010年   223篇
  2009年   180篇
  2008年   243篇
  2007年   212篇
  2006年   194篇
  2005年   184篇
  2004年   171篇
  2003年   149篇
  2002年   138篇
  2001年   25篇
  2000年   27篇
  1999年   34篇
  1998年   45篇
  1997年   17篇
  1996年   22篇
  1995年   18篇
  1994年   21篇
  1993年   17篇
  1992年   19篇
  1991年   14篇
  1990年   22篇
  1989年   18篇
  1988年   15篇
  1987年   15篇
  1985年   11篇
  1984年   25篇
  1983年   14篇
  1982年   17篇
  1981年   16篇
  1980年   18篇
  1979年   17篇
  1978年   16篇
  1977年   8篇
  1974年   7篇
  1973年   7篇
  1964年   7篇
  1962年   7篇
排序方式: 共有4464条查询结果,搜索用时 15 毫秒
991.
Seizures represent a frequent symptom in gliomas and significantly impact patient morbidity and quality of life. Although the pathogenesis of tumor-related seizures is not fully understood, accumulating evidence indicates a key role of the peritumoral microenvironment. Brain cancer cells interact with neurons by forming synapses with them and by releasing exosomes, cytokines, and other small molecules. Strong interactions among neurons often lead to the synchronization of their activity. In this paper, we used an in vitro model to investigate the role of exosomes released by glioma cell lines and by patient-derived glioma stem cells (GSCs). The addition of exosomes released by U87 glioma cells to neuronal cultures at day in vitro (DIV) 4, when neurons are not yet synchronous, induces synchronization. At DIV 7–12 neurons become highly synchronous, and the addition of the same exosomes disrupts synchrony. By combining Ca2+ imaging, electrical recordings from single neurons with patch-clamp electrodes, substrate-integrated microelectrode arrays, and immunohistochemistry, we show that synchronization and de-synchronization are caused by the combined effect of (i) the formation of new neuronal branches, associated with a higher expression of Arp3, (ii) the modification of synaptic efficiency, and (iii) a direct action of exosomes on the electrical properties of neurons, more evident at DIV 7–12 when the threshold for spike initiation is significantly reduced. At DIV 7–12 exosomes also selectively boost glutamatergic signaling by increasing the number of excitatory synapses. Remarkably, de-synchronization was also observed with exosomes released by glioma-associated stem cells (GASCs) from patients with low-grade glioma but not from patients with high-grade glioma, where a more variable outcome was observed. These results show that exosomes released from glioma modify the electrical properties of neuronal networks and that de-synchronization caused by exosomes from low-grade glioma can contribute to the neurological pathologies of patients with brain cancers.Subject terms: Neuroscience, Preclinical research  相似文献   
992.
993.
Glioblastoma (GB) is the most aggressive, lethal and frequent primary brain tumor. It originates from glial cells and is characterized by rapid expansion through infiltration. GB cells interact with the microenvironment and healthy surrounding tissues, mostly neurons and vessels. GB cells project tumor microtubes (TMs) contact with neurons, and exchange signaling molecules related to Wingless/WNT, JNK, Insulin or Neuroligin-3 pathways. This cell to cell communication promotes GB expansion and neurodegeneration. Moreover, healthy neurons form glutamatergic functional synapses with GB cells which facilitate GB expansion and premature death in mouse GB xerograph models. Targeting signaling and synaptic components of GB progression may become a suitable strategy against glioblastoma. In a Drosophila GB model, we have determined the post-synaptic nature of GB cells with respect to neurons, and the contribution of post-synaptic genes expressed in GB cells to tumor progression. In addition, we document the presence of intratumoral synapses between GB cells, and the functional contribution of pre-synaptic genes to GB calcium dependent activity and expansion. Finally, we explore the relevance of synaptic genes in GB cells to the lifespan reduction caused by GB advance. Our results indicate that both presynaptic and postsynaptic proteins play a role in GB progression and lethality.  相似文献   
994.
Despite the evidence accumulated over the past decade that telocytes (TCs) are a distinctive, though long neglected, cell entity of the stromal microenvironment of several organs of the human body, to date their localization in the endocrine glands remains almost unexplored. This study was therefore undertaken to examine the presence and characteristics of TCs in normal human thyroid stromal tissue through an integrated morphologic approach featuring light microscopy and ultrastructural analysis. TCs were first identified by immunohistochemistry that revealed the existence of an intricate network of CD34+ stromal cells spread throughout the thyroid interfollicular connective tissue. Double immunofluorescence allowed to clearly differentiate CD34+ stromal cells lacking CD31 immunoreactivity from neighbour CD31+ microvascular structures, and the evidence that these stromal cells coexpressed CD34 and platelet‐derived growth factor receptor α further strengthened their identification as TCs. Transmission electron microscopy confirmed the presence of stromal cells ultrastructurally identifiable as TCs projecting their characteristic cytoplasmic processes (i.e., telopodes) into the narrow interstitium between thyroid follicles and blood microvessels, where telopodes intimately surrounded the basement membrane of thyrocytes. Collectively, these morphologic findings provide the first comprehensive demonstration that TCs are main constituents of the human thyroid stroma and lay the necessary groundwork for further in‐depth studies aimed at clarifying their putative implications in glandular homeostasis and pathophysiology.  相似文献   
995.
Cassava brown streak disease (CBSD), dubbed the “Ebola of plants”, is a serious threat to food security in Africa caused by two viruses of the family Potyviridae: cassava brown streak virus (CBSV) and Ugandan (U)CBSV. Intriguingly, U/CBSV, along with another member of this family and one secoviridae, are the only known RNA viruses encoding a protein of the Maf/ham1-like family, a group of widespread pyrophosphatase of non-canonical nucleotides (ITPase) expressed by all living organisms. Despite the socio-economic impact of CDSD, the relevance and role of this atypical viral factor has not been yet established. Here, using an infectious cDNA clone and reverse genetics, we demonstrate that UCBSV requires the ITPase activity for infectivity in cassava, but not in the model plant Nicotiana benthamiana. HPLC-MS/MS experiments showed that, quite likely, this host-specific constraint is due to an unexpected high concentration of non-canonical nucleotides in cassava. Finally, protein analyses and experimental evolution of mutant viruses indicated that keeping a fraction of the yielded UCBSV ITPase covalently bound to the viral RNA-dependent RNA polymerase (RdRP) optimizes viral fitness, and this seems to be a feature shared by the other members of the Potyviridae family expressing Maf/ham1-like proteins. All in all, our work (i) reveals that the over-accumulation of non-canonical nucleotides in the host might have a key role in antiviral defense, and (ii) provides the first example of an RdRP-ITPase partnership, reinforcing the idea that RNA viruses are incredibly versatile at adaptation to different host setups.  相似文献   
996.
997.
The sensitivity of liver cells to anoxia is a major problem afflicting liver preservation and transplantation. Intermittent ischemia has been proposed to reduce reperfusion injury. The aim of the study was to assess oxygen free radical formation and cell injury during continuous or intermittent anoxia/reoxygenation in rat hepatocytes. Anion superoxide was measured by lucigenin-enhanced chemiluminescence and cell damage by LDH release and trypan blue uptake. During anoxia, superoxide generation dropped to background level in both groups; trypan blue uptake and LDH release, which increased progressively, were significantly greater in hepatocytes exposed to continuous compared to intermittent anoxia. During reoxygenation, a massive generation of superoxide anion formation, followed by a sharp increase in LDH release, was observed in both groups. However, both oxyradical generation and cell injury were significantly greater in cells exposed to continuous compared to intermittent anoxia. The data, showing that intermittent oxygen deprivation reduce liver cell injury and oxygen free radical formation determined by anoxia/reoxygenation, suggest a novel possible approach to the reduction of reperfusion injury.  相似文献   
998.
999.
Lee M  Kim A  Conwell IM  Hruby V  Mayorov A  Cai M  Wardlaw SL 《Peptides》2008,29(3):440-447
Hypothalamic POMC neurons regulate energy balance via interactions with brain melanocortin receptors (MC-Rs). POMC neurons express the MC3-R which can function as an inhibitory autoreceptor in vitro. We now demonstrate that central activation of MC3-R with ICV infusion of the specific MC3-R agonist, [D-Trp(8)]-gamma-MSH, transiently suppresses hypothalamic Pomc expression and stimulates food intake in rats. Conversely, we also show that ICV infusion of a low dose of a selective MC3-R antagonist causes a transient decrease in feeding and weight gain. These data support a functional inhibitory role for the MC3-R on POMC neurons that leads to changes in food intake.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号