首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13782篇
  免费   1029篇
  国内免费   2篇
  14813篇
  2023年   84篇
  2022年   120篇
  2021年   247篇
  2020年   177篇
  2019年   195篇
  2018年   427篇
  2017年   374篇
  2016年   506篇
  2015年   691篇
  2014年   779篇
  2013年   1010篇
  2012年   1199篇
  2011年   1077篇
  2010年   666篇
  2009年   541篇
  2008年   750篇
  2007年   710篇
  2006年   628篇
  2005年   604篇
  2004年   562篇
  2003年   510篇
  2002年   478篇
  2001年   347篇
  2000年   328篇
  1999年   282篇
  1998年   121篇
  1997年   67篇
  1996年   70篇
  1995年   58篇
  1994年   59篇
  1993年   51篇
  1992年   98篇
  1991年   95篇
  1990年   89篇
  1989年   74篇
  1988年   69篇
  1987年   57篇
  1986年   41篇
  1985年   52篇
  1984年   64篇
  1983年   39篇
  1982年   32篇
  1981年   27篇
  1980年   36篇
  1979年   35篇
  1978年   26篇
  1977年   23篇
  1975年   19篇
  1973年   17篇
  1968年   19篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
131.
In our research, we collected and analyzed numerous macroalgal specimens (738) for isotopic analysis sampled over a year at monthly intervals across 20 sites within the Urías lagoon complex, a typical subtropical coastal ecosystem located in the Gulf of California. We quantified and characterized (chemically and isotopically) the N loads received by Urías throughout a year. We studied the spatial‐temporal variation of the chemical forms and isotopic signals of the available N in the water column, and we monitored in situ different environmental variables and other hydrodynamic parameters. Multiple N sources (e.g., atmospheric, sewage, seafood processing, agriculture and aquaculture effluents) and biogeochemical reactions related to the N cycle (e.g., ammonia volatilization, nitrification and denitrification) co‐occurring across the ecosystem, result in a mixture of chemical species and isotopic compositions of available N in the water column. Increased variability was observed in the δ15N values of macroalgae (0.41‰–22.67‰). Based on our results, the variation in δ15N was best explained by spatio‐temporal changes in available N and not necessarily related to the N sources. The variability was also explained by the differences in macroalgal biology among functional groups, species and/or individuals. Although the δ15N‐macroalgae technique was a useful tool to identify N sources, its application in coastal ecosystems receiving multiple N sources, with changing environmental conditions influencing biogeochemical processes, and high diversity of ephemeral macroalgal species, could be less sensitive and have less predictive power.  相似文献   
132.
There is increasing evidence that several reversible oxidative post-translational modifications of protein cysteines participate in cell signalling. Specific proteomic techniques are required to identify these modifications and to study their regulation in different cell processes, that are collectively known as thiol redox proteomics. Recently, fluorescence derivatization methods have been developed that enable these post-translational modifications to be studied using proteomic workflows based on two-dimensional electrophoresis, which is a relatively accessible and affordable technique. As well as enabling a large number of samples to be processed, two-dimensional electrophoresis has the advantage that it does not rely on the intensive use of mass spectrometers. This methodology allows to "visualise" redox changes in a broad context and, although identification of the modified residues is not so straightforward, complementary derivatization can overcome this drawback. Here we review the different derivatization strategies that have been employed in these studies, comparing their advantages and potential limitations. We also review the applications and results obtained, with particular emphasis on those involving (patho)physiological stimuli, thereby showing the potential of these techniques to study the thiol redox proteome.  相似文献   
133.
134.
135.
Common bean (Phaseolus vulgaris) has become a cosmopolitan crop, but was originally domesticated in the Americas and has been grown in Latin America for several thousand years. Consequently an enormous diversity of bean nodulating bacteria have developed and in the centers of origin the predominant species in bean nodules is R. etli. In some areas of Latin America, inoculation, which normally promotes nodulation and nitrogen fixation is hampered by the prevalence of native strains. Many other species in addition to R. etli have been found in bean nodules in regions where bean has been introduced. Some of these species such as R. leguminosarum bv. phaseoli, R. gallicum bv. phaseoli and R. giardinii bv. phaseoli might have arisen by acquiring the phaseoli plasmid from R. etli. Others, like R. tropici, are well adapted to acid soils and high temperatures and are good inoculants for bean under these conditions. The large number of rhizobia species capable of nodulating bean supports that bean is a promiscuous host and a diversity of bean-rhizobia interactions exists. Large ranges of dinitrogen fixing capabilities have been documented among bean cultivars and commercial beans have the lowest values among legume crops. Knowledge on bean symbiosis is still incipient but could help to improve bean biological nitrogen fixation.  相似文献   
136.
137.
138.
Variable selection is usually performed to increase interpretability, as sparser models are easier to understand than full models. However, a focus on sparsity is not always suitable, for example, when features are related due to contextual similarities or high correlations. Here, it may be more appropriate to identify groups and their predictive members, a task that can be accomplished with bi-level selection procedures. To investigate whether such techniques lead to increased interpretability, group exponential LASSO (GEL), sparse group LASSO (SGL), composite minimax concave penalty (cMCP), and least absolute shrinkage, and selection operator (LASSO) as reference methods were used to select predictors in time-to-event, regression, and classification tasks in bootstrap samples from a cohort of 1001 patients. Different groupings based on prior knowledge, correlation structure, and random assignment were compared in terms of selection relevance, group consistency, and collinearity tolerance. The results show that bi-level selection methods are superior to LASSO in all criteria. The cMCP demonstrated superiority in selection relevance, while SGL was convincing in group consistency. An all-round capacity was achieved by GEL: the approach jointly selected correlated and content-related predictors while maintaining high selection relevance. This method seems recommendable when variables are grouped, and interpretation is of primary interest.  相似文献   
139.
140.
Chloride (Cl(-)) is an essential nutrient and one of the most abundant inorganic anions in plant tissues. We have cloned an Arabidopsis thaliana cDNA encoding for a member of the cation-Cl(-) cotransporter (CCC) family. Deduced plant CCC proteins are highly conserved, and phylogenetic analyses revealed their relationships to the sub-family of animal K(+):Cl(-) cotransporters. In Xenopus laevis oocytes, the A. thaliana CCC protein (At CCC) catalysed the co-ordinated symport of K(+), Na(+) and Cl(-), and this transport activity was inhibited by the 'loop' diuretic bumetanide, a specific inhibitor of vertebrate Na(+):K(+):Cl(-) cotransporters, indicating that At CCC encodes for a bona fide Na(+):K(+):Cl(-) cotransporter. Analysis of At CCC promoter-beta-glucuronidase transgenic Arabidopsis plants revealed preferential expression in the root and shoot vasculature at the xylem/symplast boundary, root tips, trichomes, leaf hydathodes, leaf stipules and anthers. Plants homozygous for two independent T-DNA insertions in the CCC gene exhibited shorter organs such as inflorescence stems, roots, leaves and siliques. The elongation zone of the inflorescence stem of ccc plants often necrosed during bolt emergence, while seed production was strongly impaired. In addition, ccc plants exhibited defective Cl(-) homeostasis under high salinity, as they accumulated higher and lower Cl(-) amounts in shoots and roots, respectively, than the treated wild type, suggesting At CCC involvement in long-distance Cl(-) transport. Compelling evidence is provided on the occurrence of cation-chloride cotransporters in the plant kingdom and their significant role in major plant developmental processes and Cl(-) homeostasis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号