首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4120篇
  免费   332篇
  国内免费   2篇
  2023年   21篇
  2022年   39篇
  2021年   109篇
  2020年   56篇
  2019年   75篇
  2018年   116篇
  2017年   85篇
  2016年   151篇
  2015年   199篇
  2014年   246篇
  2013年   323篇
  2012年   391篇
  2011年   335篇
  2010年   223篇
  2009年   181篇
  2008年   242篇
  2007年   212篇
  2006年   194篇
  2005年   186篇
  2004年   171篇
  2003年   149篇
  2002年   138篇
  2001年   26篇
  2000年   27篇
  1999年   34篇
  1998年   45篇
  1997年   17篇
  1996年   22篇
  1995年   18篇
  1994年   21篇
  1993年   17篇
  1992年   19篇
  1991年   14篇
  1990年   22篇
  1989年   18篇
  1988年   15篇
  1987年   16篇
  1985年   11篇
  1984年   25篇
  1983年   14篇
  1982年   17篇
  1981年   16篇
  1980年   18篇
  1979年   17篇
  1978年   16篇
  1977年   8篇
  1974年   8篇
  1973年   8篇
  1964年   7篇
  1962年   7篇
排序方式: 共有4454条查询结果,搜索用时 46 毫秒
121.
122.
Platinum-based anti-cancer agents have been used for many years to treat many different types of cancer. However, the efficacy of these drugs is limited by serious side effects. One of the strategies to reduce the side effects is encapsulation of the drug in a lipid formulation. Recently, we discovered a novel method for the efficient encapsulation of cisplatin in a lipid formulation. The method is unique in that it does not generate conventional liposomes but nanocapsules: small aggregates of solid cisplatin covered by a lipid bilayer. Also carboplatin, a cisplatin-derived anti-cancer drug with different chemical properties, can be efficiently encapsulated by a similar method. The encapsulation in nanocapsules dramatically improves the in vitro cytotoxicity of the platinum drugs. Our results hold the promise that the nanocapsule technology could prove successful in the efficient encapsulation of many other (platinum-based) drugs, and thereby improve their therapeutic index and profile in vivo.  相似文献   
123.
Calmodulin (CaM), the primary intracellular Ca2+ receptor, regulates a large number of key enzymes and controls a wide spectrum of important biological responses. Recognition between CaM and its target sequence in rat olfactory cyclic nucleotide-gated ion channel (OLFp) was investigated by circular dichroism (CD), fluorescence, and NMR spectroscopy. Fluorescence data showed the OLFp tightly bound to CaM with a dissociation constant of 12?nM in a 1:1 stoichiometry. Far-UV CD data showed that approximately 60% of OLFp residues formed α-helical structures when associated with CaM. NMR data showed that most of the 15N–1H HSQC cross-peaks of the 15N-labeled CaM not only shifted but also split into two sets of peaks upon association with the OLFp. Our data indicated that the two distinct CaM/OLFp complexes existed simultaneously with stable structures that were not interexchangeable within the NMR time scale. In light of the palindromic sequence of OLFp (FQRIVRLVGVIRDW) for CaM targeting, we proposed that the helical OLFp with C2 symmetry may bind to CaM in two orientations. This hypothesis is supported by the observation that only one set of 15N–1H HSQC cross-peaks of the 15N-labeled CaM was detected upon association with OLFp-M13 chimeric peptide (OLFMp), a mutated OLFp lacking the palindromic feature. The binding specificity of OLFMp to CaM was restored when the palindromic feature was destroyed. Binding modes of CaM/OLFp and CaM/OLFMp simulated by molecular docking were in accord with their distinct patterns observed in HSQC spectra. Our studies suggest that the palindromic residues in OLFp are crucial for the orientation-specific recognition by CaM.  相似文献   
124.

Background and Aims

Estimates of biochar residence times in soils range over three orders of magnitude. We present the first direct comparison between the biodegradation of a char from hydrothermal carbonization (htcBC) and pyrolysis (pyrBC) with high temporal resolution.

Methods

Mineralization of the biochars and their shared Miscanthus feedstock in three soils was determined directly by the 13CO2 efflux using a novel method incorporating wavelength scanned cavity ring-down spectroscopy. Biochar half-life (t1/2) was estimated with three empirical models.

Results

(1) The htcBC was readily biodegradable, whereas pyrBC was more recalcitrant. (2) Cumulative degradation of both biochars increased with soil organic carbon and nitrogen content. (3) The corrected Akaike information criterion (AICC) showed an overall preference for the double exponential model (DEM) reflecting a labile and a recalcitrant C-pool, over the first-order degradation model (FODM) and a logarithmic model. (4) The DEM resulted in t1/2 ranging from 19.7–44.5, 0.7–2.1 and 0.8–1.3 years for pyrBC, htcBC and feedstock, respectively.

Conclusion

The degradation was rather similar between feedstock and htcBC but one order of magnitude slower for pyrBC. The AICC preferred FODM in two cases, where the DEM parameters indicated no distinction between a labile and recalcitrant carbon pool.  相似文献   
125.
The influenza virus nonstructural protein 1 (NS1) inhibits innate immunity by multiple mechanisms. We previously reported that NS1 is able to inhibit the production of type I interferon (IFN) and proinflammatory cytokines in human primary dendritic cells (DCs). Here, we used recombinant viruses expressing mutant NS1 from the A/Texas/36/91 and A/Puerto Rico/08/34 strains in order to analyze the contribution of different NS1 domains to its antagonist functions. We show that the polyadenylation stimulating factor 30 (CPSF30) binding function of the NS1 protein from A/Texas/36/91 influenza virus, which is absent in the A/Puerto Rico/08/34 strain, is essential for counteracting these innate immune events in DCs. However, the double-stranded RNA (dsRNA) binding domain, present in both strains, specifically inhibits the induction of type I IFN genes in infected DCs, while it is essential only for inhibition of type I IFN proteins and proinflammatory cytokine production in cells infected with influenza viruses lacking a functional CPSF30 binding domain, such as A/Puerto Rico/08/34.  相似文献   
126.
NOX (NADPH oxidase) plays an important role during several pathologies because it produces the superoxide anion (O2•−), which reacts with NO (nitric oxide), diminishing its vasodilator effect. Although different isoforms of NOX are expressed in ECs (endothelial cells) of blood vessels, the NOX2 isoform has been considered the principal therapeutic target for vascular diseases because it can be up-regulated by inhibiting the interaction between its p47phox (cytosolic protein) and p22phox (transmembrane protein) subunits. In this research, two ethers, 4-(4-acetyl-2-methoxy-phenoxy)-acetic acid (1) and 4-(4-acetyl-2-methoxy-phenoxy)-butyric acid (2) and two esters, pentanedioic acid mono-(4-acetyl-2-methoxy-phenyl) ester (3) and heptanedioic acid mono-(4-acetyl-2-methoxy-phenyl) ester (4), which are apocynin derivatives were designed, synthesized and evaluated as NOX inhibitors by quantifying O2•− production using EPR (electron paramagnetic resonance) measurements. In addition, the antioxidant activity of apocynin and its derivatives were determined. A docking study was used to identify the interactions between the NOX2′s p47phox subunit and apocynin or its derivatives. The results showed that all of the compounds exhibit inhibitory activity on NOX, being 4 the best derivative. However, neither apocynin nor its derivatives were free radical scavengers. On the other hand, the in silico studies demonstrated that the apocynin and its derivatives were recognized by the polybasic SH3A and SH3B domains, which are regions of p47phox that interact with p22phox. Therefore this experimental and theoretical study suggests that compound 4 could prevent the formation of the complex between p47phox and p22phox without needing to be activated by MPO (myeloperoxidase), this being an advantage over apocynin.  相似文献   
127.
Lung cancer is the leading cause of cancer‐related deaths over the world, characterized by a very high mortality rate. Molecular technique development tries to focus on early detection of cancers by studying molecular alterations that characterize cancer cells. Worldwide lung cancer research has focused on an ever‐increasing number of molecular elements of carcinogenesis at genetic, epigenetic and protein levels. The non‐invasiveness is the characteristic that all clinical trials on cancer detection should have. Abnormal chest imaging and/or non‐specific symptoms are initial signals of lung cancer that appear in an advanced stage of disease. This fact represents the cause of the low 5‐year survival rate: over 90% of patients dying within 5 years of diagnosis. Since smokers have higher quantity of sputum containing exfoliated cells from the bronchial tree, and the sputum represents the most easily accessible biological fluid and its collection is non‐invasive, analysis of this sample represents a good area of research in early lung cancer diagnosis. Continued cigarette smoking is the cause of chronic obstructive pulmonary disease (COPD), with an estimated attributable risk factor exceeding 80% in smoking affected individuals. Lung cancer is found in 40–70% of patients with COPD, particularly in severe disease, and it is a common cause of death in these patients. A large prospective trial of almost half a million non‐smokers showed as lung cancer is also common in patients with COPD who have never smoked. This review describes issues related to early lung cancer screening using non‐invasive methods. J. Cell. Physiol. © 2012 Wiley Periodicals, Inc.  相似文献   
128.
Caspase-1 is known to activate the proinflammatory cytokines IL-1β and IL-18. Additionally, it can cleave other substrates, including proteins involved in metabolism. Recently, we showed that caspase-1 deficiency in mice strongly reduces high-fat diet-induced weight gain, at least partly caused by an increased energy production. Increased feces secretion by caspase-1-deficient mice suggests that lipid malabsorption possibly further reduces adipose tissue mass. In this study we investigated whether caspase-1 plays a role in triglyceride-(TG)-rich lipoprotein metabolism using caspase-1-deficient and wild-type mice. Caspase-1 deficiency reduced the postprandial TG response to an oral lipid load, whereas TG-derived fatty acid (FA) uptake by peripheral tissues was not affected, demonstrated by unaltered kinetics of [3H]TG-labeled very low-density lipoprotein (VLDL)-like emulsion particles. An oral gavage of [3H]TG-containing olive oil revealed that caspase-1 deficiency reduced TG absorption and subsequent uptake of TG-derived FA in liver, muscle, and adipose tissue. Similarly, despite an elevated hepatic TG content, caspase-1 deficiency reduced hepatic VLDL-TG production. Intestinal and hepatic gene expression analysis revealed that caspase-1 deficiency did not affect FA oxidation or FA uptake but rather reduced intracellular FA transport, thereby limiting lipid availability for the assembly and secretion of TG-rich lipoproteins. The current study reveals a novel function for caspase-1, or caspase-1-cleaved substrates, in controlling intestinal TG absorption and hepatic TG secretion.  相似文献   
129.
The aim of this work was to study the plasma membrane calcium pump (PMCA) reaction cycle by characterizing conformational changes associated with calcium, ATP, and vanadate binding to purified PMCA. This was accomplished by studying the exposure of PMCA to surrounding phospholipids by measuring the incorporation of the photoactivatable phosphatidylcholine analog 1-O-hexadecanoyl-2-O-[9-[[[2-[125I]iodo-4-(trifluoromethyl-3H-diazirin-3-yl)benzyl]oxy]carbonyl]nonanoyl]-sn-glycero-3-phosphocholine to the protein. ATP could bind to the different vanadate-bound states of the enzyme either in the presence or in the absence of Ca2+ with high apparent affinity. Conformational movements of the ATP binding domain were determined using the fluorescent analog 2′(3′)-O-(2,4,6-trinitrophenyl)adenosine 5′-triphosphate. To assess the conformational behavior of the Ca2+ binding domain, we also studied the occlusion of Ca2+, both in the presence and in the absence of ATP and with or without vanadate. Results show the existence of occluded species in the presence of vanadate and/or ATP. This allowed the development of a model that describes the transport of Ca2+ and its relation with ATP hydrolysis. This is the first approach that uses a conformational study to describe the PMCA P-type ATPase reaction cycle, adding important features to the classical E1-E2 model devised using kinetics methodology only.  相似文献   
130.
Pathogenesis-related 10 (PR-10) proteins are involved in many aspects of plant biology but their molecular function is still unclear. They are related by sequence and structural homology to mammalian lipid transport and plant abscisic acid receptor proteins and are predicted to have cavities for ligand binding. Recently, three new members of the PR-10 family, the Fra a proteins, have been identified in strawberry, where they are required for the activity of the flavonoid biosynthesis pathway, which is essential for the development of color and flavor in fruits. Here, we show that Fra a proteins bind natural flavonoids with different selectivity and affinities in the low μm range. The structural analysis of Fra a 1 E and a Fra a 3-catechin complex indicates that loops L3, L5, and L7 surrounding the ligand-binding cavity show significant flexibility in the apo forms but close over the ligand in the Fra a 3-catechin complex. Our findings provide mechanistic insight on the function of Fra a proteins and suggest that PR-10 proteins, which are widespread in plants, may play a role in the control of secondary metabolic pathways by binding to metabolic intermediates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号