首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4471篇
  免费   361篇
  国内免费   2篇
  4834篇
  2023年   24篇
  2022年   61篇
  2021年   112篇
  2020年   60篇
  2019年   75篇
  2018年   118篇
  2017年   91篇
  2016年   155篇
  2015年   205篇
  2014年   258篇
  2013年   336篇
  2012年   413篇
  2011年   345篇
  2010年   233篇
  2009年   191篇
  2008年   262篇
  2007年   233篇
  2006年   201篇
  2005年   203篇
  2004年   185篇
  2003年   164篇
  2002年   148篇
  2001年   43篇
  2000年   46篇
  1999年   44篇
  1998年   49篇
  1997年   17篇
  1996年   22篇
  1995年   23篇
  1994年   22篇
  1993年   18篇
  1992年   30篇
  1991年   21篇
  1990年   33篇
  1989年   28篇
  1988年   19篇
  1987年   20篇
  1986年   14篇
  1985年   16篇
  1984年   32篇
  1983年   16篇
  1982年   18篇
  1981年   16篇
  1980年   19篇
  1979年   17篇
  1978年   22篇
  1977年   12篇
  1974年   10篇
  1973年   12篇
  1962年   7篇
排序方式: 共有4834条查询结果,搜索用时 15 毫秒
91.
Flocking is a paradigmatic example of collective animal behaviour, where global order emerges out of self-organization. Each individual has a tendency to align its flight direction with those of neighbours, and such a simple form of interaction produces a state of collective motion of the group. When compared with other cases of collective ordering, a crucial feature of animal groups is that the interaction network is not fixed in time, as each individual moves and continuously changes its neighbours. The possibility to exchange neighbours strongly enhances the stability of global ordering and the way information is propagated through the group. Here, we assess the relevance of this mechanism in large flocks of starlings (Sturnus vulgaris). We find that birds move faster than Brownian walkers both with respect to the centre of mass of the flock, and with respect to each other. Moreover, this behaviour is strongly anisotropic with respect to the direction of motion of the flock. We also measure the amount of neighbours reshuffling and find that neighbours change in time exclusively as a consequence of the random fluctuations in the individual motion, so that no specific mechanism to keep one''s neighbours seems to be enforced. On the contrary, our findings suggest that a more complex dynamical process occurs at the border of the flock.  相似文献   
92.
In the present study, a series of metallic complexes of the 1,4-naphthoquinone lawsone (26) were synthesized and evaluated for potential cytotoxicity in a mouse leukemic macrophagic RAW 264.7 cell line. Cell viability was determined by the MTT assay. Significant growth inhibition was observed for the copper complex (4) with an IC50 value of 2.5 μM. This compound was selected for further evaluation of cytotoxic activity on several human cancer cells including HT-29 (human colorectal adenocarcinoma), HepG2 (human hepatocellular carcinoma) and HeLa, (human cervical adenocarcinoma cells). Significant cell viability decrease was also observed in HepG2 cells. The apoptotic potential of this complex was evaluated in these cells. Compound 4 induced apoptosis by a mechanism that involves the activation of caspases 3, 8 and 9 and modulation of apoptotic-related proteins such as Bax, Bad, and p53. These results indicate that metal complexes of lawsone derivatives, in particular compound 4, might be used for the design of new antitumoral agents.  相似文献   
93.

Background

Accurate QTL mapping is a prerequisite in the search for causative mutations. Bayesian genomic selection models that analyse many markers simultaneously should provide more accurate QTL detection results than single-marker models. Our objectives were to (a) evaluate by simulation the influence of heritability, number of QTL and number of records on the accuracy of QTL mapping with Bayes Cπ and Bayes C; (b) estimate the QTL status (homozygous vs. heterozygous) of the individuals analysed. This study focussed on the ten largest detected QTL, assuming they are candidates for further characterization.

Methods

Our simulations were based on a true dairy cattle population genotyped for 38 277 phased markers. Some of these markers were considered biallelic QTL and used to generate corresponding phenotypes. Different numbers of records (4387 and 1500), heritability values (0.1, 0.4 and 0.7) and numbers of QTL (10, 100 and 1000) were studied. QTL detection was based on the posterior inclusion probability for individual markers, or on the sum of the posterior inclusion probabilities for consecutive markers, estimated using Bayes C or Bayes Cπ. The QTL status of the individuals was derived from the contrast between the sums of the SNP allelic effects of their chromosomal segments.

Results

The proportion of markers with null effect (π) frequently did not reach convergence, leading to poor results for Bayes Cπ in QTL detection. Fixing π led to better results. Detection of the largest QTL was most accurate for medium to high heritability, for low to moderate numbers of QTL, and with a large number of records. The QTL status was accurately inferred when the distribution of the contrast between chromosomal segment effects was bimodal.

Conclusions

QTL detection is feasible with Bayes C. For QTL detection, it is recommended to use a large dataset and to focus on highly heritable traits and on the largest QTL. QTL statuses were inferred based on the distribution of the contrast between chromosomal segment effects.  相似文献   
94.
The degradation of herbicide atrazine (2-chloro-4-ethylamino-6-isopropylamino-1, 3, 5-triazine) by a soil bacterium is reported. The bacterium involved is a species of Nocardia, which utilizes the atrazine as the sole source of carbon and nitrogen. A new metabolite, 4-amino-2-chloro-1, 3, 5-triazine, of the degradation of atrazine in the presence of glucose has been identified. The results further substantiated that atrazine can be degraded by soil microorganisms and indicated that deamination can also occur, as well as dealkylation. 4-Amino-2-chloro-1,3,5-triazine did not show phytotoxic activity to oat (Avena sativa L.), demonstrating that deamination insures detoxification.  相似文献   
95.
96.
This study was prompted by increasing concerns about ecological damage and human health threats derived by persistent contamination of water and soil with herbicides, and emerging of bio-sensing technology as powerful, fast and efficient tool for the identification of such hazards. This work is aimed at overcoming principal limitations negatively affecting the whole-cell-based biosensors performance due to inadequate stability and sensitivity of the bio-recognition element. The novel bio-sensing elements for the detection of herbicides were generated exploiting the power of molecular engineering in order to improve the performance of photosynthetic complexes. The new phenotypes were produced by an in vitro directed evolution strategy targeted at the photosystem II (PSII) D1 protein of Chlamydomonas reinhardtii, using exposures to radical-generating ionizing radiation as selection pressure. These tools proved successful to identify D1 mutations conferring enhanced stability, tolerance to free-radical-associated stress and competence for herbicide perception. Long-term stability tests of PSII performance revealed the mutants capability to deal with oxidative stress-related conditions. Furthermore, dose-response experiments indicated the strains having increased sensitivity or resistance to triazine and urea type herbicides with I50 values ranging from 6×10−8 M to 2×10−6 M. Besides stressing the relevance of several amino acids for PSII photochemistry and herbicide sensing, the possibility to improve the specificity of whole-cell-based biosensors, via coupling herbicide-sensitive with herbicide-resistant strains, was verified.  相似文献   
97.
Germline mutations in the BRCA1 and BRCA2 genes contribute to approximately 18% of hereditary ovarian cancers conferring an estimated lifetime risk from 15% to 50%. A variable incidence of mutations has been reported for these genes in ovarian cancer cases from different populations. In Greece, six mutations in BRCA1 account for 63% of all mutations detected in both BRCA1 and BRCA2 genes. This study aimed to determine the prevalence of BRCA1 mutations in a Greek cohort of 106 familial ovarian cancer patients that had strong family history or metachronous breast cancer and 592 sporadic ovarian cancer cases. All 698 patients were screened for the six recurrent Greek mutations (including founder mutations c.5266dupC, p.G1738R and the three large deletions of exon 20, exons 23–24 and exon 24). In familial cases, the BRCA1 gene was consequently screened for exons 5, 11, 12, 20, 21, 22, 23, 24. A deleterious BRCA1 mutation was found in 43/106 (40.6%) of familial cancer cases and in 27/592 (4.6%) of sporadic cases. The variant of unknown clinical significance p.V1833M was identified in 9/698 patients (1.3%). The majority of BRCA1 carriers (71.2%) presented a high-grade serous phenotype. Identifying a mutation in the BRCA1 gene among breast and/or ovarian cancer families is important, as it enables carriers to take preventive measures. All ovarian cancer patients with a serous phenotype should be considered for genetic testing. Further studies are warranted to determine the prevalence of mutations in the rest of the BRCA1 gene, in the BRCA2 gene, and other novel predisposing genes for breast and ovarian cancer.  相似文献   
98.

Background/Aim

Genetic analysis in neuroblastoma has identified the profound influence of MYCN amplification and 11q deletion in patients’ prognosis. These two features of high-risk neuroblastoma usually occur as mutually exclusive genetic markers, although in rare cases both are present in the same tumor. The purpose of this study was to characterize the genetic profile of these uncommon neuroblastomas harboring both these high-risk features.

Methods

We selected 18 neuroblastomas with MNA plus 11q loss detected by FISH. Chromosomal aberrations were analyzed using Multiplex Ligation-dependent Probe Amplification and Single Nucleotide Polymorphism array techniques.

Results and Conclusion

This group of tumors has approximately the same high frequency of aberrations as found earlier for 11q deleted tumors. In some cases, DNA instability generates genetic heterogeneity, and must be taken into account in routine genetic diagnosis.  相似文献   
99.
100.
Vino Santo is a sweet wine produced from late harvesting and pressing of Nosiola grapes in a small, well‐defined geographical area in the Italian Alps. We used metagenomics to characterize the dynamics of microbial communities in the products of three wineries, resulting from spontaneous fermentation with almost the same timing and procedure. Comparing fermentation dynamics and grape microbial composition, we show a rapid increase in a small number of wine yeast species, with a parallel decrease in complexity. Despite the application of similar protocols, slight changes in the procedures led to significant differences in the microbiota in the three cases of fermentation: (i) fungal content of the must varied significantly in the different wineries, (ii) Pichia membranifaciens persisted in only one of the wineries, (iii) one fermentation was characterized by the balanced presence of Saccharomyces cerevisiae and Hanseniaspora osmophila during the later phases. We suggest the existence of a highly winery‐specific ‘microbial‐terroir’ contributing significantly to the final product rather than a regional ‘terroir’. Analysis of changes in abundance during fermentation showed evident correlations between different species, suggesting that fermentation is the result of a continuum of interaction between different species and physical–chemical parameters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号