首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4436篇
  免费   361篇
  国内免费   2篇
  2023年   21篇
  2022年   30篇
  2021年   112篇
  2020年   60篇
  2019年   75篇
  2018年   118篇
  2017年   91篇
  2016年   155篇
  2015年   205篇
  2014年   258篇
  2013年   336篇
  2012年   413篇
  2011年   345篇
  2010年   233篇
  2009年   191篇
  2008年   262篇
  2007年   233篇
  2006年   201篇
  2005年   203篇
  2004年   185篇
  2003年   164篇
  2002年   148篇
  2001年   43篇
  2000年   46篇
  1999年   44篇
  1998年   49篇
  1997年   17篇
  1996年   22篇
  1995年   23篇
  1994年   22篇
  1993年   18篇
  1992年   30篇
  1991年   21篇
  1990年   33篇
  1989年   28篇
  1988年   19篇
  1987年   20篇
  1986年   14篇
  1985年   16篇
  1984年   32篇
  1983年   16篇
  1982年   18篇
  1981年   16篇
  1980年   19篇
  1979年   17篇
  1978年   22篇
  1977年   12篇
  1974年   10篇
  1973年   12篇
  1962年   7篇
排序方式: 共有4799条查询结果,搜索用时 15 毫秒
131.
132.
The ability to establish genetic risk models is critical for early identification and optimal treatment of breast cancer. For such a model to gain clinical utility, more variants must be identified beyond those discovered in previous genome-wide association studies (GWAS). This is especially true for women at high risk because of family history, but without BRCA1/2 mutations. This study incorporates three datasets in a GWAS analysis of women with Ashkenazi Jewish (AJ) homogeneous ancestry. Two independent discovery cohorts comprised 239 and 238 AJ women with invasive breast cancer or preinvasive ductal carcinoma in situ and strong family histories of breast cancer, but lacking the three BRCA1/2 founder mutations, along with 294 and 230 AJ controls, respectively. An independent, third cohort of 203 AJ cases with familial breast cancer history and 263 healthy controls of AJ women was used for validation. A total of 19 SNPs were identified as associated with familial breast cancer risk in AJ women. Among these SNPs, 13 were identified from a panel of 109 discovery SNPs, including an FGFR2 haplotype. In addition, six previously identified breast cancer GWAS SNPs were confirmed in this population. Seven of the 19 markers were significant in a multivariate predictive model of familial breast cancer in AJ women, three novel SNPs [rs17663555(5q13.2), rs566164(6q21), and rs11075884(16q22.2)], the FGFR2 haplotype, and three previously published SNPs [rs13387042(2q35), rs2046210(ESR1), and rs3112612(TOX3)], yielding moderate predictive power with an area under the curve (AUC) of the ROC (receiver-operator characteristic curve) of 0.74. Population-specific genetic variants in addition to variants shared with populations of European ancestry may improve breast cancer risk prediction among AJ women from high-risk families without founder BRCA1/2 mutations.  相似文献   
133.
Here we report the physical mapping of the rad56-1 mutation to the NAT3 gene, which encodes the catalytic subunit of the NatB N-terminal acetyltransferase in Saccharomyces cerevisiae. Mutation of RAD56 causes sensitivity to X-rays, methyl methanesulfonate, zeocin, camptothecin and hydroxyurea, but not to UV light, suggesting that N-terminal acetylation of specific DNA repair proteins is important for efficient DNA repair.  相似文献   
134.
In response to stress, the heart undergoes a remodeling process associated with cardiac hypertrophy that eventually leads to heart failure. A-kinase anchoring proteins (AKAPs) have been shown to coordinate numerous prohypertrophic signaling pathways in cultured cardiomyocytes. However, it remains to be established whether AKAP-based signaling complexes control cardiac hypertrophy and remodeling in vivo. In the current study, we show that AKAP-Lbc assembles a signaling complex composed of the kinases PKN, MLTK, MKK3, and p38α that mediates the activation of p38 in cardiomyocytes in response to stress signals. To address the role of this complex in cardiac remodeling, we generated transgenic mice displaying cardiomyocyte-specific overexpression of a molecular inhibitor of the interaction between AKAP-Lbc and the p38-activating module. Our results indicate that disruption of the AKAP-Lbc/p38 signaling complex inhibits compensatory cardiomyocyte hypertrophy in response to aortic banding-induced pressure overload and promotes early cardiac dysfunction associated with increased myocardial apoptosis, stress gene activation, and ventricular dilation. Attenuation of hypertrophy results from a reduced protein synthesis capacity, as indicated by decreased phosphorylation of 4E-binding protein 1 and ribosomal protein S6. These results indicate that AKAP-Lbc enhances p38-mediated hypertrophic signaling in the heart in response to abrupt increases in the afterload.  相似文献   
135.
This case control study aims to investigate the role of MMP-2 ?1306C > T polymorphism as a potential risk factor and possible prognostic marker for breast cancer in a South European population. 113 consecutive incident cases of histologically confirmed ductal breast cancer and 124 healthy controls were recruited. MMP-2 ?1306C > T polymorphism was genotyped; multivariate logistic regression as well as Cox regression analysis were performed. MMP-2 ?1306C > T status was not associated with breast cancer risk either at the total sample or at the subanalyses on premenopausal and postmenopausal women. At the survival analysis, a trend towards a favorable association between MMP-2 ?1306C > T allele and disease-free survival as well as overall survival was observed. Regarding subanalyses on ER-negative and ER-positive cases, the favorable association implicating MMP-2 ?1306C > T allele was particularly evident among ER-positive cases; no significant associations emerged among ER-negative cases. MMP-2 ?1306C > T polymorphism does not seem to be a risk factor for breast cancer in South European population; however, a trend towards a favorable association with survival has been observed.  相似文献   
136.
137.
Platinum-based anti-cancer agents have been used for many years to treat many different types of cancer. However, the efficacy of these drugs is limited by serious side effects. One of the strategies to reduce the side effects is encapsulation of the drug in a lipid formulation. Recently, we discovered a novel method for the efficient encapsulation of cisplatin in a lipid formulation. The method is unique in that it does not generate conventional liposomes but nanocapsules: small aggregates of solid cisplatin covered by a lipid bilayer. Also carboplatin, a cisplatin-derived anti-cancer drug with different chemical properties, can be efficiently encapsulated by a similar method. The encapsulation in nanocapsules dramatically improves the in vitro cytotoxicity of the platinum drugs. Our results hold the promise that the nanocapsule technology could prove successful in the efficient encapsulation of many other (platinum-based) drugs, and thereby improve their therapeutic index and profile in vivo.  相似文献   
138.
Calmodulin (CaM), the primary intracellular Ca2+ receptor, regulates a large number of key enzymes and controls a wide spectrum of important biological responses. Recognition between CaM and its target sequence in rat olfactory cyclic nucleotide-gated ion channel (OLFp) was investigated by circular dichroism (CD), fluorescence, and NMR spectroscopy. Fluorescence data showed the OLFp tightly bound to CaM with a dissociation constant of 12?nM in a 1:1 stoichiometry. Far-UV CD data showed that approximately 60% of OLFp residues formed α-helical structures when associated with CaM. NMR data showed that most of the 15N–1H HSQC cross-peaks of the 15N-labeled CaM not only shifted but also split into two sets of peaks upon association with the OLFp. Our data indicated that the two distinct CaM/OLFp complexes existed simultaneously with stable structures that were not interexchangeable within the NMR time scale. In light of the palindromic sequence of OLFp (FQRIVRLVGVIRDW) for CaM targeting, we proposed that the helical OLFp with C2 symmetry may bind to CaM in two orientations. This hypothesis is supported by the observation that only one set of 15N–1H HSQC cross-peaks of the 15N-labeled CaM was detected upon association with OLFp-M13 chimeric peptide (OLFMp), a mutated OLFp lacking the palindromic feature. The binding specificity of OLFMp to CaM was restored when the palindromic feature was destroyed. Binding modes of CaM/OLFp and CaM/OLFMp simulated by molecular docking were in accord with their distinct patterns observed in HSQC spectra. Our studies suggest that the palindromic residues in OLFp are crucial for the orientation-specific recognition by CaM.  相似文献   
139.

Background and Aims

Estimates of biochar residence times in soils range over three orders of magnitude. We present the first direct comparison between the biodegradation of a char from hydrothermal carbonization (htcBC) and pyrolysis (pyrBC) with high temporal resolution.

Methods

Mineralization of the biochars and their shared Miscanthus feedstock in three soils was determined directly by the 13CO2 efflux using a novel method incorporating wavelength scanned cavity ring-down spectroscopy. Biochar half-life (t1/2) was estimated with three empirical models.

Results

(1) The htcBC was readily biodegradable, whereas pyrBC was more recalcitrant. (2) Cumulative degradation of both biochars increased with soil organic carbon and nitrogen content. (3) The corrected Akaike information criterion (AICC) showed an overall preference for the double exponential model (DEM) reflecting a labile and a recalcitrant C-pool, over the first-order degradation model (FODM) and a logarithmic model. (4) The DEM resulted in t1/2 ranging from 19.7–44.5, 0.7–2.1 and 0.8–1.3 years for pyrBC, htcBC and feedstock, respectively.

Conclusion

The degradation was rather similar between feedstock and htcBC but one order of magnitude slower for pyrBC. The AICC preferred FODM in two cases, where the DEM parameters indicated no distinction between a labile and recalcitrant carbon pool.  相似文献   
140.
The influenza virus nonstructural protein 1 (NS1) inhibits innate immunity by multiple mechanisms. We previously reported that NS1 is able to inhibit the production of type I interferon (IFN) and proinflammatory cytokines in human primary dendritic cells (DCs). Here, we used recombinant viruses expressing mutant NS1 from the A/Texas/36/91 and A/Puerto Rico/08/34 strains in order to analyze the contribution of different NS1 domains to its antagonist functions. We show that the polyadenylation stimulating factor 30 (CPSF30) binding function of the NS1 protein from A/Texas/36/91 influenza virus, which is absent in the A/Puerto Rico/08/34 strain, is essential for counteracting these innate immune events in DCs. However, the double-stranded RNA (dsRNA) binding domain, present in both strains, specifically inhibits the induction of type I IFN genes in infected DCs, while it is essential only for inhibition of type I IFN proteins and proinflammatory cytokine production in cells infected with influenza viruses lacking a functional CPSF30 binding domain, such as A/Puerto Rico/08/34.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号