首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   208篇
  免费   18篇
  2024年   1篇
  2023年   1篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   4篇
  2016年   4篇
  2015年   5篇
  2014年   11篇
  2013年   12篇
  2012年   13篇
  2011年   13篇
  2010年   4篇
  2009年   16篇
  2008年   8篇
  2007年   11篇
  2006年   9篇
  2005年   13篇
  2004年   6篇
  2003年   2篇
  2002年   5篇
  2001年   6篇
  2000年   5篇
  1999年   9篇
  1998年   3篇
  1997年   3篇
  1995年   3篇
  1994年   4篇
  1993年   5篇
  1992年   6篇
  1991年   6篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   4篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   4篇
  1978年   3篇
  1974年   1篇
  1973年   1篇
  1971年   2篇
  1967年   1篇
排序方式: 共有226条查询结果,搜索用时 15 毫秒
101.
Excessive fetal exposure to glucocorticoids has been implicated in the etiology of adult metabolic and cardiovascular disease. Placental 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2) may protect the fetus from excessive glucocorticoid exposure. Maternal stress may be accompanied by elevated levels of cortisol and increased proinflammatory cytokines [interleukin (IL)-1beta, IL-6, and tumor necrosis factor-alpha (TNF-alpha)]. We hypothesize that proinflammatory cytokines inhibit human placental 11beta-HSD activity. We incubated explant cultures of term human placental villi in the presence or absence of 10 ng/ml IL-1beta, IL-6, or TNF-alpha, with or without agonists or antagonists of intracellular Ca2+ and adenylyl cyclase. Activity for 11beta-HSD2 was estimated using a radioisotope assay, and mRNA was measured using quantitative RT-PCR. All cytokines significantly (P < or = 0.05) reduced 11beta-HSD2 activity (>75% suppression); maximal inhibition occurred within 2 h and was maintained for at least 24 h. The IL-1beta-induced inhibitory activity was attenuated using a Ca2+ channel blocker (nifedipine), an intracellular Ca2+ antagonist [8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate], or the adenylyl cyclase stimulant forskolin. Conversely, 11beta-HSD2 activity was diminished in the presence of the Ca2+ ionophore A-23187 or the adenylyl cyclase inhibitor SQ-22536. mRNA levels for 11beta-HSD2 were not changed by any of the treatments. Proinflammatory cytokines inhibit human placental 11beta-HSD2 activity through a mechanism that involves increased intracellular Ca2+ and inhibition of adenylyl cyclase. This could result in excessive fetal exposure to maternal cortisol. This mechanism might mediate part of the increased risk of metabolic and cardiovascular disease in adult offspring.  相似文献   
102.
The lipid characterization in tissues from the three deep-sea sharks leafscale gulper shark (Centrophorus squamosus), Portuguese dogfish (Centroscymnus coelolepis) and black dogfish (Centrocyllium fabricii) captured at Hatton Bank in the North Atlantic were examined. The objective was to determine the lipid content and the fatty acid composition in different tissues. In addition, the fatty acid composition in tissues and species was compared. The tissues examined were pancreas, heart, kidney, stomach, spleen and liver. The lipid content was high in liver (40–50%) and ranged from 1% to 5% in the other tissues. The dominant fatty acids were C16:0, C18:1 (n-9), C18:1 (n-7) and C22:6 (n-3) in all tissues. All tissues had a high content of unsaturated fatty acids.  相似文献   
103.
Correct segregation of chromosomes is particularly challenging during the rapid nuclear divisions of early embryogenesis. This process is disrupted by HorkaD, a dominant-negative mutation in Drosophila melanogaster that causes female sterility due to chromosome tangling and nondisjunction during oogenesis and early embryogenesis. HorkaD also renders chromosomes unstable during spermatogenesis, which leads to the formation of diplo//haplo mosaics, including the gynandromorphs. Complete loss of gene function brings about maternal-effect lethality: embryos of the females without the HorkaD-identified gene perish due to disrupted centrosome function, defective spindle assembly, formation of chromatin bridges, and abnormal chromosome segregation during the cleavage divisions. These defects are indicators of mitotic catastrophe and suggest that the gene product acts during the meiotic and the cleavage divisions, an idea that is supported by the observation that germ-line chimeras exhibit excessive germ-line and cleavage function. The gene affected by the HorkaD mutation is lodestar, a member of the helicase-related genes. The HorkaD mutation results in replacement of Ala777 with Thr, which we suggest causes chromosome instability by increasing the affinity of Lodestar for chromatin.  相似文献   
104.
Cowchock syndrome (CMTX4) is a slowly progressive X-linked recessive disorder with axonal neuropathy, deafness, and cognitive impairment. The disease locus was previously mapped to an 11 cM region at chromosome X: q24-q26. Exome sequencing of an affected individual from the originally described family identified a missense change c.1478A>T (p.Glu493Val) in AIFM1, the gene encoding apoptosis-inducing factor (AIF) mitochondrion-associated 1. The change is at a highly conserved residue and cosegregated with the phenotype in the family. AIF is an FAD-dependent NADH oxidase that is imported into mitochondria. With apoptotic insults, a N-terminal transmembrane linker is cleaved off, producing a soluble fragment that is released into the cytosol and then transported into the nucleus, where it triggers caspase-independent apoptosis. Another AIFM1 mutation that predicts p.Arg201del has recently been associated with severe mitochondrial encephalomyopathy in two infants by impairing oxidative phosphorylation. The c.1478A>T (p.Glu493Val) mutation found in the family reported here alters the redox properties of the AIF protein and results in increased cell death via apoptosis, without affecting the activity of the respiratory chain complexes. Our findings expand the spectrum of AIF-related disease and provide insight into the effects of AIFM1 mutations.  相似文献   
105.
106.
Vaccinia virus envelope protein A27 has multiple functions and is conserved in the Orthopoxvirus genus of the poxvirus family. A27 protein binds to cell surface heparan sulfate, provides an anchor for A26 protein packaging into mature virions, and is essential for egress of mature virus (MV) from infected cells. Here, we crystallized and determined the structure of a truncated form of A27 containing amino acids 21–84, C71/72A (tA27) at 2.2 Å resolution. tA27 protein uses the N-terminal region interface (NTR) to form an unexpected trimeric assembly as the basic unit, which contains two parallel α-helices and one unusual antiparallel α-helix; in a serpentine way, two trimers stack with each other to form a hexamer using the C-terminal region interface (CTR). Recombinant tA27 protein forms oligomers in a concentration-dependent manner in vitro in gel filtration. Analytical ultracentrifugation and multi-angle light scattering revealed that tA27 dimerized in solution and that Leu47, Leu51, and Leu54 at the NTR and Ile68, Asn75, and Leu82 at the CTR are responsible for tA27 self-assembly in vitro. Finally, we constructed recombinant vaccinia viruses expressing full length mutant A27 protein defective in either NTR, CTR, or both interactions; the results demonstrated that wild type A27 dimer/trimer formation was impaired in NTR and CTR mutant viruses, resulting in small plaques that are defective in MV egress. Furthermore, the ability of A27 protein to form disulfide-linked protein complexes with A26 protein was partially or completely interrupted by NTR and CTR mutations, resulting in mature virion progeny with increased plasma membrane fusion activity upon cell entry. Together, these results demonstrate that A27 protein trimer structure is critical for MV egress and membrane fusion modulation. Because A27 is a neutralizing target, structural information will aid the development of inhibitors to block A27 self-assembly or complex formation against vaccinia virus infection.  相似文献   
107.
Many processes in the regulation of gene expression and signaling involve the formation of protein complexes involving multi-domain proteins. Individual domains that mediate protein-protein and protein-nucleic acid interactions are typically connected by flexible linkers, which contribute to conformational dynamics and enable the formation of complexes with distinct binding partners. Solution techniques are therefore required for structural analysis and to characterize potential conformational dynamics. Nuclear magnetic resonance spectroscopy (NMR) provides such information but often only sparse data are obtained with increasing molecular weight of the complexes. It is therefore beneficial to combine NMR data with additional structural restraints from complementary solution techniques. Small angle X-ray/neutron scattering (SAXS/SANS) data can be efficiently combined with NMR-derived information, either for validation or by providing additional restraints for structural analysis. Here, we show that the combination of SAXS and SANS data can help to refine structural models obtained from data-driven docking using HADDOCK based on sparse NMR data. The approach is demonstrated with the ternary protein-protein-RNA complex involving two RNA recognition motif (RRM) domains of Sex-lethal, the N-terminal cold shock domain of Upstream-to-N-Ras, and msl-2 mRNA. Based on chemical shift perturbations we have mapped protein-protein and protein-RNA interfaces and complemented this NMR-derived information with SAXS data, as well as SANS measurements on subunit-selectively deuterated samples of the ternary complex. Our results show that, while the use of SAXS data is beneficial, the additional combination with contrast variation in SANS data resolves remaining ambiguities and improves the docking based on chemical shift perturbations of the ternary protein-RNA complex.  相似文献   
108.
Oxidation of cis-3,4-dehydroadipyl-CoA semialdehyde to cis-3,4-dehydroadipyl-CoA by the aldehyde dehydrogenase, ALDH(C) (EC.1.2.1.77), is an essential step in the metabolism of benzoate in Burkholderia xenovorans LB400. In a previous study, we established a structural blueprint for this novel group of ALDH enzymes. Here, we build significantly on this initial work and propose a detailed reaction mechanism for ALDH(C) based on comprehensive structural and functional investigations of active site residues. Kinetic analyses reveal essential roles for C296 as the nucleophile and E257 as the associated general base. Structural analyses of E257Q and C296A variants suggest a dynamic charge repulsion relationship between E257 and C296 that contributes to the inherent flexibility of E257 in the native enzyme, which is further regulated by E496 and E167. A proton relay network anchored by E496 and supported by E167 and K168 serves to reset E257 for the second catalytic step. We also propose that E167, which is unique to ALDH(C) and its homologs, serves a critical role in presenting the catalytic water to the newly reset E257 such that the enzyme can proceed with deacylation and product release. Collectively, the reaction mechanism proposed for ALDH(C) promotes a greater understanding of these novel ALDH enzymes, the ALDH super-family in general, and benzoate degradation in B. xenovorans LB400.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号