首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   896篇
  免费   139篇
  1035篇
  2022年   7篇
  2021年   11篇
  2019年   5篇
  2018年   11篇
  2017年   11篇
  2016年   9篇
  2015年   31篇
  2014年   38篇
  2013年   44篇
  2012年   59篇
  2011年   62篇
  2010年   45篇
  2009年   36篇
  2008年   54篇
  2007年   51篇
  2006年   55篇
  2005年   49篇
  2004年   57篇
  2003年   51篇
  2002年   58篇
  2001年   6篇
  1999年   6篇
  1998年   21篇
  1997年   8篇
  1995年   14篇
  1994年   8篇
  1993年   4篇
  1992年   4篇
  1991年   5篇
  1990年   5篇
  1987年   8篇
  1986年   7篇
  1984年   9篇
  1983年   10篇
  1982年   8篇
  1981年   15篇
  1980年   16篇
  1979年   10篇
  1978年   6篇
  1977年   6篇
  1976年   11篇
  1974年   7篇
  1973年   5篇
  1972年   8篇
  1971年   6篇
  1970年   11篇
  1969年   8篇
  1966年   4篇
  1965年   4篇
  1962年   4篇
排序方式: 共有1035条查询结果,搜索用时 20 毫秒
131.
The three basic cell types in the migrating slug of Dictyostelium discoideum show differential chemotactic response to cyclic AMP (cAMP) and differential sensitivity to suppression of the chemotaxis by ammonia. The values of these parameters indicate a progressive maturation of chemotactic properties during the transdifferentiation of slug cell types. We present a model that explains the localization of the three cell types within the slug based on these chemotactic differences and on the maturation of their chemotactic properties.  相似文献   
132.
133.
134.
135.
New strains of influenza spread around the globe via the movement of infected individuals. The global dynamics of influenza are complicated by different patterns of influenza seasonality in different regions of the world. We have released an open-source stochastic mathematical model of the spread of influenza across 321 major, strategically located cities of the world. Influenza is transmitted between cities via infected airline passengers. Seasonality is simulated by increasing the transmissibility in each city at the times of the year when influenza has been observed to be most prevalent. The spatiotemporal spread of pandemic influenza can be understood through clusters of global transmission and links between them, which we identify using the epidemic percolation network (EPN) of the model. We use the model to explain the observed global pattern of spread for pandemic influenza A(H1N1) 2009-2010 (pandemic H1N1 2009) and to examine possible global patterns of spread for future pandemics depending on the origin of pandemic spread, time of year of emergence, and basic reproductive number (). We also use the model to investigate the effectiveness of a plausible global distribution of vaccine for various pandemic scenarios. For pandemic H1N1 2009, we show that the biggest impact of vaccination was in the temperate northern hemisphere. For pandemics starting in the temperate northern hemisphere in May or April, vaccination would have little effect in the temperate southern hemisphere and a small effect in the tropics. With the increasing interconnectedness of the world's population, we must take a global view of infectious disease transmission. Our open-source, computationally simple model can help public health officials plan for the next pandemic as well as deal with interpandemic influenza.  相似文献   
136.

Background

Phosphoinositide 3-kinases (PI3Ks) regulate numerous physiological processes including some aspects of cardiac function. Although regulation of cardiac contraction by individual PI3K isoforms has been studied, little is known about the cardiac consequences of downregulating multiple PI3Ks concurrently.

Methods and Results

Genetic ablation of both p110α and p110β in cardiac myocytes throughout development or in adult mice caused heart failure and death. Ventricular myocytes from double knockout animals showed transverse tubule (T-tubule) loss and disorganization, misalignment of L-type Ca2+ channels in the T-tubules with ryanodine receptors in the sarcoplasmic reticulum, and reduced Ca2+ transients and contractility. Junctophilin-2, which is thought to tether T-tubules to the sarcoplasmic reticulum, was mislocalized in the double PI3K-null myocytes without a change in expression level.

Conclusions

PI3K p110α and p110β are required to maintain the organized network of T-tubules that is vital for efficient Ca2+-induced Ca2+ release and ventricular contraction. PI3Ks maintain T-tubule organization by regulating junctophilin-2 localization. These results could have important medical implications because several PI3K inhibitors that target both isoforms are being used to treat cancer patients in clinical trials.  相似文献   
137.

Background

The turnover of acetylcholine receptors at the neuromuscular junction is regulated in an activity-dependent manner. Upon denervation and under various other pathological conditions, receptor half-life is decreased.

Methodology/Principal Findings

We demonstrate a novel approach to follow the kinetics of acetylcholine receptor lifetimes upon pulse labeling of mouse muscles with 125I-α-bungarotoxin in vivo. In contrast to previous assays where residual activity was measured ex vivo, in our setup the same animals are used throughout the whole measurement period, thereby permitting a dramatic reduction of animal numbers at increased data quality. We identified three stability levels of acetylcholine receptors depending on the presence or absence of innervation: one pool of receptors with a long half-life of ∼13 days, a second with an intermediate half-life of ∼8 days, and a third with a short half-life of ∼1 day. Data were highly reproducible from animal to animal and followed simple exponential terms. The principal outcomes of these measurements were reproduced by an optical pulse-labeling assay introduced recently.

Conclusions/Significance

A novel assay to determine kinetics of acetylcholine receptor turnover with small animal numbers is presented. Our data show that nerve activity acts on muscle acetylcholine receptor stability by at least two different means, one shifting receptor lifetime from short to intermediate and another, which further increases receptor stability to a long lifetime. We hypothesize on possible molecular mechanisms.  相似文献   
138.
139.
140.
Translational repression of maternal nanos (nos) mRNA by a cis-acting Translational Control Element (TCE) in the nos 3'UTR is critical for anterior-posterior patterning of the Drosophila embryo. We show, through ectopic expression experiments, that the nos TCE is capable of repressing gene expression at later stages of development in neuronal cells that regulate the molting cycle. Our results predict additional targets of TCE-mediated repression within the nervous system. They also suggest that mechanisms that regulate maternal mRNAs, like TCE-mediated repression, may function more widely during development to spatially or temporally control gene expression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号