首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1485篇
  免费   41篇
  国内免费   1篇
  2023年   16篇
  2022年   31篇
  2021年   72篇
  2020年   24篇
  2019年   53篇
  2018年   46篇
  2017年   40篇
  2016年   47篇
  2015年   79篇
  2014年   75篇
  2013年   114篇
  2012年   104篇
  2011年   91篇
  2010年   50篇
  2009年   51篇
  2008年   67篇
  2007年   51篇
  2006年   79篇
  2005年   62篇
  2004年   53篇
  2003年   42篇
  2002年   33篇
  2001年   15篇
  2000年   17篇
  1999年   14篇
  1998年   7篇
  1997年   10篇
  1996年   9篇
  1995年   10篇
  1994年   14篇
  1993年   9篇
  1992年   7篇
  1991年   11篇
  1989年   4篇
  1988年   8篇
  1987年   6篇
  1986年   4篇
  1985年   17篇
  1984年   6篇
  1983年   7篇
  1982年   6篇
  1981年   9篇
  1980年   11篇
  1979年   7篇
  1978年   5篇
  1977年   4篇
  1975年   4篇
  1974年   4篇
  1973年   6篇
  1971年   3篇
排序方式: 共有1527条查询结果,搜索用时 109 毫秒
971.

Aims

Novel fungal endophyte (Neotyphodium coenophialum; Latch, Christensen and Samuels; Glenn, Bacon, and Hanlin) genotypes in symbiosis with tall fescue (Lolium arundinaceum; Schreb. Darbysh.) have been recently introduced to agricultural seed markets. These novel endophytes do not produce the full suite of toxins that the ‘common toxic’ form does, and therefore, may not have the same consequences on plant and soil processes. Here, we evaluated the effects of endophyte presence and genotype on ecosystem processes of tall fescue stands.

Methods

We quantified the effects of the presence of the common toxic endophyte (CT), two novel endophyte genotypes (AR-542, AR-584), no endophyte (endophyte free, E-), and a mixture of all endophyte statuses (mix) within a single genotype of tall fescue (PDF) on various soil and plant parameters.

Results

Endophyte presence and genotype affected tall fescue cover and plant species diversity: cover—CT, AR-542, AR -584, mix > E- and species diversity—E- > AR-542, AR -584 > CT, mix. Most measured soil parameters had significant endophyte effects. For example, higher fluxes of soil CO2 and N2O were measured from stands of AR-542 than from the other endophyte treatments.

Conclusions

These results indicate that endophyte presence and genetic identity are important in understanding the ecosystem-scale effects of this agronomically important grass-fungal symbiosis.  相似文献   
972.
Oxidative stress and inflammatory damage play an important role in cerebral ischemic pathogenesis and may represent a target for treatment. The development of new strategies for enhancing drug delivery to the brain is of great importance in diagnostics and therapeutics of central nervous diseases. The present study examined the hypothesis that intranasal delivery of nanoformulation of curcuminoids would reduce oxidative stress-associated brain injury after middle cerebral artery occlusion (MCAO). The rats were subjected to 2 h of MCAO followed by 22 h reperfusion, after which the grip strength, locomotor activity was performed. The effects of treatment in the rats were assessed by grip strength, locomotor activity and biochemical studies (glutathione peroxidase, glutathione reductase, lipid peroxidation, superoxide dismutase, and catalase) in the brain. Pretreatment with polymeric N-isopropyl acryl amide (PNIPAM) nanoparticles formulation of all three curcuminoids (curcumin (Cur), demethoxycurcumin (DMC), and bisdemethoxycurcumin (BDMC)) at doses (100 μg/kg body weight) given intranasally was effective in bringing significant changes on all the parameters. While nanoformulation of curcumin at a dose of 100 μg/kg body weight was most active in the treatment of cerebral ischemia as compared to others nanoformulation of curcuminoids. The potency of antioxidant activity significantly decreased in the order of PNIPAM nanoformulation of Cur > DMC >> BDMC, thus suggesting the critical role of methoxy groups on the phenyl ring.  相似文献   
973.
974.
The homeostasis of protein metabolism is maintained and regulated by the rates of protein biosynthesis and degradation in living systems. Alterations of protein degradation may regulate protein biosynthesis through a feedback mechanism. Whether a change in protein biosynthesis modulates protein degradation has not been reported. In this study, we found that inhibition of protein biosynthesis induced phosphorylation/activation of AKT and led to phosphorylation of AKT target substrates, including FoxO1, GSK3α/β, p70S6K, AS160, and the E3 ubiquitin ligase MDM2. Phosphorylation of ribosomal protein S6 was also modulated by inhibition of protein biosynthesis. The AKT phosphorylation/activation was mediated mainly through the PI3K pathway because it was blocked by the PI3K inhibitor LY294002. The activated AKT phosphorylated MDM2 at Ser166 and promoted degradation of the tumor suppressor p53. These findings suggest that inhibition of protein biosynthesis can alter degradation of some proteins through activation of AKT. This study reveals a novel regulation of protein degradation and calls for caution in blocking protein biosynthesis to study the half-life of proteins.  相似文献   
975.
This study evaluated the effect of Flacourtia indica fruit extract against isoprenaline (ISO) induced renal damage in rats. This investigation showed that ISO administration in rats increased the level oxidative stress biomarkers such as malondialdehyde (MDA), nitric oxide (NO), advanced protein oxidation product (APOP) in kidneys followed by a decrease in antioxidant enzymes functions. Flacourtia indica fruit extract, which is rich in strong antioxidants, also reduced the MDA, NO and APOP level in kidney of ISO administered rats. Inflammation and necrosis was also visible in kidney section of ISO administered rats which was significantly prevented by atenolol and Flacourtia indica fruit extract. Moreover, atenolol and Flacourtia indica fruit extract also modulated the genes expressions related to inflammation and oxidative stress in kidneys. The beneficial effects could be attributed to the presence of a number of phenolic antioxidants. This study suggests that Flacourtia indica fruit extract may prevent kidney dysfunction in ISO administered rats, probably by preventing oxidative stress and inflammation.  相似文献   
976.

Utilization of biocontrol agents is a sustainable approach to reduce plant diseases caused by fungal pathogens. In the present study, we tested the effect of the candidate biocontrol fungus Aureobasidium pullulans (De Bary) G. Armaud on strawberry under in vitro and in vivo conditions to control crown rot, root rot and grey mould caused by Phytophthora cactorum (Lebert and Cohn) and Botrytis cinerea Pers, respectively. A dual plate confrontation assay showed that mycelial growth of P. cactorum and B. cinerea was reduced by 33–48% when challenged by A. pullulans as compared with control treatments. Likewise, detached leaf and fruit assays showed that A. pullulans significantly reduced necrotic lesion size on leaves and disease severity on fruits caused by P. cactorum and B. cinerea. In addition, greenhouse experiments with whole plants revealed enhanced biocontrol efficacy against root rot and grey mould when treated with A. pullulans either in combination with the pathogen or pre-treated with A. pullulans followed by inoculation of the pathogens. Our results demonstrate that A. pullulans is an effective biocontrol agent to control strawberry diseases caused by fungal pathogens and can be an effective alternative to chemical-based fungicides.

  相似文献   
977.
Soil amendment with two types of composts: animal manure (AC) and vegetable waste (VC) induced composts have potential to alleviate Cd toxicity to maize in contaminated soil. Therefore, Cd mobility in waste water irrigated soil can be addressed through eco-friendly and cost effective organic soil amendments AC and VC that eventually reduces its translocation from polluted soil to maize plant tissues. The comparative effectiveness of AC and VC at 3% rate were evaluated on Cd solubility, its accumulation in maize tissues, translocation from root to shoot, chlorophyll contents, plant biomass, yield and soil properties (pH, NPK, OM). Results revealed that the addition of organic soil amendments significantly minimized Cd mobility and leachability in soil by 58.6% and 47%, respectively in VC-amended soil over control. While, the reduction was observed by 61.7% and 57%, respectively when AC was added at 3% over control. Comparing the control soil, Cd uptake effectively reduced via plants shoots and roots by 50%, 46% respectively when VC was added in polluted soil. However, Cd uptake was decreased in maize shoot and roots by 58% and 52.4% in AC amended soil at 3% rate, respectively. Additionally, NPK contents were significantly improved in polluted soil as well as in plant tissues in both composts amended soil Comparative to control, the addition of composts significantly improved the maize dry biomass and chlorophyll contents at 3% rate. Thus, present study confirmed that the addition of animal manure derived compost (AC) at 3% rate performed well and might be consider the suitable approach relative to vegetable compost for maize growth in polluted soil.  相似文献   
978.

A conspicuous bioluminescence during nighttime was reported in an aquaculture farm in the Cochin estuary due to Gonyaulax spinifera bloom on March 20, 2020. In situ measurements on bioluminescence was carried out during nighttime to quantify the response of G. spinifera to various mechanical stimuli. The bioluminescence intensity (BI) was measured using Glowtracka, an advanced single channel sensor, attached to a Conductivity–Temperature–Depth Profiler. In steady environment, without any external stimuli, the bioluminescence generated due to the movement of fishes and shrimps in the water column was not detected by the sensor. However, stimuli such as a hand splash, oar and swimming movements, and a mixer could generate measurable bioluminescence responses. An abundance of?~?2.7?×?106 cells L?1 of G. spinifera with exceptionally high chlorophyll a of 25 mg m?3 was recorded. The BI in response to hand splash was recorded as high as 1.6?×?1011 photons cm?2 s?1. Similarly, BI of?~?1–6?×?1010 photons cm?2 s?1 with a cumulative bioluminescence of?~?2.51?×?1012 photons cm?2 (for 35 s) was recorded when there is a mixer with a constant force of 494 N/800 rpm min?1. The response of G. spinifera was spontaneous with no time lapse between application of stimuli and the bioluminescence response. Interestingly, in natural environment, application of stimulus for longer time periods (10 min) does not lower the bioluminescence intensity due to the replenishment of water thrusted in by the mixer from surrounding areas. We also demonstrated that the bioluminescence intensity decreases with increase in distance from the source of stimuli (mixer) (av. 1.84?×?1010 photons cm?2 s?1 at 0.2 m to av. 0.05?×?1010 photons cm?2 s?1 at 1 m). The BI was highest in the periphery of the turbulent wake generated by the stimuli (av. 3.1?×?1010 photons cm?2 s?1) compared to the center (av. 1.8?×?1010 photons cm?2 s?1). When the stimuli was applied vertically down, the BI decreased from 0.2 m (0.3?×?1010 photons cm?2 s?1) to 0.5 m (0.10?×?1010 photons cm?2 s?1). Our study demonstrates that the BI of G. spinifera increases with increase in mechanical stimuli and decreases with increase in distance from the stimuli.

  相似文献   
979.
980.
Lone  Iqbal M.  Iraqi  Fuad A. 《Mammalian genome》2022,33(3):421-436

Type 2 diabetes (T2D) is a polygenic and multifactorial complex disease, defined as chronic metabolic disorder. It's a major global health concern with an estimated 463 million adults aged 20–79 years with diabetes and projected to increase up to 700 million by 2045. T2D was reported to be one of the four leading causes of non-communicable disease (NCD) deaths in 2012. Environmental factors play a part in the development of polygenic forms of diabetes. Polygenic forms of diabetes often run-in families. Fortunately, T2D, which accounts for 90–95% of the entire four types of diabetes including, Type 1 diabetes (T1D), T2D, monogenic diabetes syndromes (MGDS), and Gestational diabetes mellitus, can be prevented or delayed through nutrition and lifestyle changes as well as through pharmacologic interventions. Typical symptom of the T2D is high blood glucose levels and comprehensive insulin resistance of the body, producing an impaired glucose tolerance. Impaired glucose tolerance of T2D is accompanied by extensive health complications, including cardiovascular diseases (CVD) that vary in morbidity and mortality among populations. The pathogenesis of T2D varies between populations and/or ethnic groupings and is known to be attributed extremely by genetic components and environmental factors. It is evident that genetic background plays a critical role in determining the host response toward certain environmental conditions, whether or not of developing T2D (susceptibility versus resistant). T2D is considered as a silent disease that can progress for years before its diagnosis. Once T2D is diagnosed, many metabolic malfunctions are observed whether as side effects or as independent comorbidity. Mouse models have been proven to be a powerful tool for mapping genetic factors that underline the susceptibility to T2D development as well its comorbidities. Here, we have conducted a comprehensive search throughout the published data covering the time span from early 1990s till the time of writing this review, for already reported quantitative trait locus (QTL) associated with murine T2D and comorbidities in different mouse models, which contain different genetic backgrounds. Our search has resulted in finding 54 QTLs associated with T2D in addition to 72 QTLs associated with comorbidities associated with the disease. We summarized the genomic locations of these mapped QTLs in graphical formats, so as to show the overlapping positions between of these mapped QTLs, which may suggest that some of these QTLs could be underlined by sharing gene/s. Finally, we reviewed and addressed published reports that show the success of translation of the identified mouse QTLs/genes associated with the disease in humans.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号