首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   207篇
  免费   8篇
  215篇
  2023年   7篇
  2022年   5篇
  2021年   12篇
  2020年   3篇
  2019年   1篇
  2018年   5篇
  2017年   8篇
  2016年   6篇
  2015年   6篇
  2014年   9篇
  2013年   16篇
  2012年   17篇
  2011年   23篇
  2010年   12篇
  2009年   13篇
  2008年   7篇
  2007年   17篇
  2006年   14篇
  2005年   13篇
  2004年   9篇
  2003年   4篇
  2002年   3篇
  1996年   1篇
  1993年   1篇
  1989年   1篇
  1983年   1篇
  1971年   1篇
排序方式: 共有215条查询结果,搜索用时 15 毫秒
31.
32.
We report here the synthesis and SAR of a new series of thieno[3,2-d]pyrimidines as potent Tpl2 kinase inhibitors. The proposed binding mode suggests the potential flipped binding mode depending on the substitution. Biacore studies show evidence of binding of these molecules to the protein kinase. The kinome inhibition profile of these molecules suggests good selectivity.  相似文献   
33.
Whether face adaptation confers any advantages to perceptual processing remains an open question. We investigated whether face adaptation can enhance the ability to make fine discriminations in the vicinity of the adapted face. We compared face discrimination thresholds in three adapting conditions: (i) same-face: where adapting and test faces were the same, (ii) different-face: where adapting and test faces differed, and (iii) baseline: where the adapting stimulus was a blank. Discrimination thresholds for morphed identity changes involving the adapted face (same-face) improved compared with those from both the baseline (no-adaptation) and different-face conditions. Since adapting to a face did not alter discrimination performance for other faces, this effect is selective for the facial identity that is adapted. These results indicate a form of gain control to heighten perceptual sensitivity in the vicinity of a currently viewed face, analogous to forms of adaptive gain control at lower levels of the visual system.  相似文献   
34.
As the molecular mechanism of β-catenin deregulation is not well understood, and stabilized β-catenin is known to translocate into the nucleus and activate genes for proliferation, a novel regulatory factor, hematological and neurological expressed 1 (HN1), for Akt-GSK3β-β-catenin axis is reported here. In our studies, HN1 gene structure was characterized. HN1 expression was found to be epidermal growth factor-responsive in PC-3 cells, and protein expression was also upregulated in PC-3 and LNCaP but not in DU145 cells. Additionally, HN1 was found to be downregulated by the specific AKT inhibitor wortmannin but not with PI3K or MAPK inhibitors, LY294002 and PD98059, respectively, in PC-3 and MCF-7 cells. Further, siRNA-mediated knockdown of HN1 resulted in considerable increase in Akt((S473)) and GSK3β((S9),(Y216)) phosphorylations; moreover, subsequent accumulation of β-catenin, increase in c-myc expression, and nuclear accumulation of cyclin D1 were observed in PC-3 cells. Knockdown of HN1 also resulted in prolongation of G(1) phase in cell cycle, increasing tetraploidy, presumably because of cells escaping from abnormal mitosis in PC-3 cells. Consistently, overexpression of HN1 reversed the cell-cycle-specific observations, resulted in accumulation of cells in G(2)/M, and reduced the proliferation rate, which were investigated using flow cytometry and methylthiazol tetrazolium assays. As activating mutations of β-catenin have been demonstrated in late-stage tumors, and β-catenin stabilization was correlated with poor prognosis in previous reports, epidermal growth factor-upregulated HN1 expression might have a role in deregulating the AKT-GSK3β((S9))-mediated signaling as a novel compensating mechanism.  相似文献   
35.
While inward remodeling of small arteries in response to low blood flow, hypertension, and chronic vasoconstriction depends on type 2 transglutaminase (TG2), the mechanisms of action have remained unresolved. We studied the regulation of TG2 activity, its (sub) cellular localization, substrates, and its specific mode of action during small artery inward remodeling. We found that inward remodeling of isolated mouse mesenteric arteries by exogenous TG2 required the presence of a reducing agent. The effect of TG2 depended on its cross-linking activity, as indicated by the lack of effect of mutant TG2. The cell-permeable reducing agent DTT, but not the cell-impermeable reducing agent TCEP, induced translocation of endogenous TG2 and high membrane-bound transglutaminase activity. This coincided with inward remodeling, characterized by a stiffening of the artery. The remodeling could be inhibited by a TG2 inhibitor and by the nitric oxide donor, SNAP. Using a pull-down assay and mass spectrometry, 21 proteins were identified as TG2 cross-linking substrates, including fibronectin, collagen and nidogen. Inward remodeling induced by low blood flow was associated with the upregulation of several anti-oxidant proteins, notably glutathione-S-transferase, and selenoprotein P. In conclusion, these results show that a reduced state induces smooth muscle membrane-bound TG2 activity. Inward remodeling results from the cross-linking of vicinal matrix proteins, causing a stiffening of the arterial wall.  相似文献   
36.
We report a case of VACTERL complex which had concomitant horseshoe lung, laryngeal cleft, and hypertrophic pyloric stenosis, which has not been previously reported.  相似文献   
37.
38.
Serotonin (5-HT) regulates different cardiac functions by acting directly on cardiomyocytes, fibroblasts and endothelial cells. Today, it is widely accepted that activated platelets represent a major source of 5-HT. In contrast, a supposed production of 5-HT in the heart is still controversial. To address this issue, we investigated the expression and localization of 5-HT synthesizing enzyme tryptophan hydroxylase (TPH) and L-aromatic amino acid decarboxylase (AADC) in the heart. We also evaluated their involvement in cardiac production of 5-HT. TPH1 was weakly expressed in mouse and rat heart and appeared restricted to mast cells. Degranulation of mast cells by compound 48/80 did not modify 5-HT cardiac content in mice. Western blots and immunolabelling experiments showed an abundant expression of AADC in the mouse and rat heart and its co-localization with endothelial cells. Incubation of cardiac homogenate with the AADC substrate (5-hydroxy-L-tryptophan) 5-HTP or intraperitoneal injection of 5-HTP in mice significantly increased cardiac 5-HT. These effects were prevented by the AADC inhibitor benserazide. Finally, 5-HTP administration in mice increased phosphorylation of aortic nitric oxide synthase 3 at Ser (1177) as well as accumulation of nitrates in cardiac tissue. This suggests that the increase in 5-HT production by AADC leads to activation of endothelial and cardiac nitric oxide pathway. These data show that endothelial AADC plays an important role in cardiac synthesis of 5-HT and possibly in 5-HT-dependent regulation of nitric oxide generation.  相似文献   
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号