首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   127篇
  免费   4篇
  131篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2017年   2篇
  2015年   3篇
  2014年   3篇
  2013年   6篇
  2012年   15篇
  2011年   9篇
  2010年   3篇
  2009年   7篇
  2008年   7篇
  2007年   3篇
  2006年   5篇
  2005年   10篇
  2004年   2篇
  2003年   4篇
  2002年   4篇
  2001年   4篇
  2000年   8篇
  1999年   4篇
  1998年   1篇
  1997年   2篇
  1995年   1篇
  1992年   2篇
  1991年   2篇
  1990年   5篇
  1989年   4篇
  1988年   2篇
  1987年   4篇
  1986年   4篇
  1985年   1篇
  1984年   1篇
排序方式: 共有131条查询结果,搜索用时 15 毫秒
51.
Whitelock JM  Melrose J  Iozzo RV 《Biochemistry》2008,47(43):11174-11183
Perlecan is a ubiquitous pericellular proteoglycan ideally placed to mediate cell signaling events controlling migration, proliferation, and differentiation. Its control of growth factor signaling usually involves interactions with the heparan sulfate chains covalently coupled to the protein core's N-terminus. However, this modular protein core also binds with relatively high affinity to a number of growth factors and surface receptors, thereby stabilizing cell-matrix links. This review will focus on perlecan-growth factor interactions and describe recent advances in our understanding of this highly conserved proteoglycan during development, cancer growth, and angiogenesis. The pro-angiogenic capacities of perlecan that involve proliferative and migratory signals in response to bound growth factors will be explored, as well as the anti-angiogenic signals resulting from interactions between the C-terminal domain known as endorepellin and integrins that control adhesion of cells to the extracellular matrix. These two somewhat diametrically opposed roles will be discussed in light of new data emerging from various fields which converge on perlecan as a key regulator of cell growth and angiogenesis.  相似文献   
52.
Proteolysis of extracellular matrix components and the production of cryptic bioactive factors play key roles in vascular remodeling. We showed previously that extracellular matrix proteolysis is triggered by the apoptosis of endothelial cells (EC), resulting in the release of an anti-apoptotic C-terminal fragment of endorepellin (LG3). Here, we characterize the endorepellin-cleaving proteases released by apoptotic EC using a multifaceted proteomics strategy. Cathepsin L (CathL), a cysteine protease known to be associated with cardiovascular disease progression in animal models and humans, was isolated from medium conditioned by apoptotic EC. CathL cleaved recombinant endorepellin in vitro, leading to LG3 release. Inhibition of CathL activity in EC exposed to pro-apoptotic stimuli prevented LG3 release without modulating the development of apoptosis in EC. Inhibition of caspase-3 activation in EC with the biochemical inhibitor DEVD-fluoromethyl ketone or small interfering RNAs concomitantly prevented CathL release by EC, LG3 production, and the development of paracrine anti-apoptotic activity. These data demonstrate that caspase-3 activation is a novel pathway of importance for triggering extracellular CathL release and the cleavage of extracellular matrix components.  相似文献   
53.
Tumor cell mitochondria are key biosynthetic hubs that provide macromolecules for cancer progression and angiogenesis. Soluble decorin protein core, hereafter referred to as decorin, potently attenuated mitochondrial respiratory complexes and mitochondrial DNA (mtDNA) in MDA-MB-231 breast carcinoma cells. We found a rapid and dynamic interplay between peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and the decorin-induced tumor suppressor gene, mitostatin. This interaction stabilized mitostatin mRNA with concurrent accumulation of mitostatin protein. In contrast, siRNA-mediated abrogation of PGC-1α-blocked decorin-evoked stabilization of mitostatin. Mechanistically, PGC-1α bound MITOSTATIN mRNA to achieve rapid stabilization. These processes were orchestrated by the decorin/Met axis, as blocking the Met-tyrosine kinase or knockdown of Met abrogated these responses. Furthermore, depletion of mitostatin blocked decorin- or rapamycin-evoked mitophagy, increased vascular endothelial growth factor A (VEGFA) production, and compromised decorin-evoked VEGFA suppression. Collectively, our findings underscore the complexity of PGC-1α-mediated mitochondrial homeostasis and establish mitostatin as a key regulator of tumor cell mitophagy and angiostasis.  相似文献   
54.
Decorin (Dcn), a small leucine-rich proteoglycan, is present in the extracellular matrix of the airways and lung tissues, contributes to lung mechanical properties, and its deposition is altered in asthma. The effect of Dcn deficiency on airway parenchymal interdependence was examined during induced bronchoconstriction. Studies were performed in C57Bl/6 mice in which the Dcn gene was disrupted by targeted deletion (Dcn(-/-)) and in wild-type controls (Dcn(+/+)). Mice were mechanically ventilated, and respiratory system impedance was measured during in vivo ventilation at positive end-expiratory pressure (PEEP) = 2 and 10 cmH(2)0, before and after aerosol delivery of methacholine (MCh). Length vs. tension curves in isolated tracheal rings were measured in vitro. Dcn distribution in +/+ mice airways was characterized by immunofluorescence; differences in collagen structure in Dcn(+/+) and Dcn(-/-) mouse lungs was examined by electron microscopy. MCh caused similar increases in airway resistance (Raw) and tissue elastance (H) in Dcn(+/+) and Dcn(-/-) mice. During MCh-induced constriction, increasing PEEP caused a decrease in Raw that was greater in Dcn(-/-) mice and a decrease in H in Dcn(-/-) mice only. Tracheal ring compliance was greater in Dcn (-/-) mice. Imaging studies showed that Dcn was deposited primarily in the airway adventitial layer in Dcn(+/+) mice; in Dcn(-/-) mice, collagen had an irregular appearance, especially in the lung periphery. These results show that lack of Dcn alters the normal interaction between airways and lung parenchyma; in asthma, changes in Dcn could potentially contribute to abnormal airway physiology.  相似文献   
55.
Cell surface heparan sulfate proteoglycans (HSPGs) participate in the catabolism of many physiologically important ligands. We previously reported that syndecan HSPGs directly mediate endocytosis, independent of coated pits. We now studied perlecan, a major cell surface HSPG genetically distinct from syndecans. Cells expressing perlecan but no other proteoglycans bound, internalized, and degraded atherogenic lipoproteins enriched in lipoprotein lipase. Binding was blocked by heparitinase, and degradation by chloroquine. Antibodies against beta(1) integrins reduced initial ligand binding, consistent with their roles as cell surface attachment sites for perlecan. By several criteria, catabolism via perlecan was distinct from either coated pits or the syndecan pathway. The kinetics of internalization (t(12) = 6 h) and degradation (t(12) approximately 18 h) were remarkably slow, unlike the other pathways. Blockade of the low density lipoprotein receptor-related protein did not slow perlecan-dependent internalization. Internalization via perlecan was inhibited by genistein but unaffected by cytochalasin D, a pattern distinct from coated pits or syndecan-mediated endocytosis. Finally, we examined cooperation between perlecan and low density lipoprotein receptors and found limited synergy. Our results demonstrate that perlecan mediates internalization and lysosomal delivery that is kinetically and biochemically distinct from other known uptake pathways and is consistent with a very slow component of HSPG-dependent ligand processing found in vitro and in vivo.  相似文献   
56.
57.
Perlecan, a ubiquitous basement membrane heparan sulfate proteoglycan, plays key roles in blood vessel growth and structural integrity. We discovered that the C terminus of perlecan potently inhibited four aspects of angiogenesis: endothelial cell migration, collagen-induced endothelial tube morphogenesis, and blood vessel growth in the chorioallantoic membrane and in Matrigel plug assays. The C terminus of perlecan was active at nanomolar concentrations and blocked endothelial cell adhesion to fibronectin and type I collagen, without directly binding to either protein; henceforth we have named it "endorepellin." We also found that endothelial cells possess a significant number of high affinity (K(d) of 11 nm) binding sites for endorepellin and that endorepellin binds endostatin and counteracts its anti-angiogenic effects. Thus, endorepellin represents a novel anti-angiogenic product, which may retard tumor neovascularization and hence tumor growth in vivo.  相似文献   
58.
Decorin is a member of the expanding group of widely distributed small leucine-rich proteoglycans that are expected to play important functions in tissue assembly. We report that mice harboring a targeted disruption of the decorin gene are viable but have fragile skin with markedly reduced tensile strength. Ultrastructural analysis revealed abnormal collagen morphology in skin and tendon, with coarser and irregular fiber outlines. Quantitative scanning transmission EM of individual collagen fibrils showed abrupt increases and decreases in mass along their axes, thereby accounting for the irregular outlines and size variability observed in cross-sections. The data indicate uncontrolled lateral fusion of collagen fibrils in the decorindeficient mice and provide an explanation for the reduced tensile strength of the skin. These findings demonstrate a fundamental role for decorin in regulating collagen fiber formation in vivo.  相似文献   
59.
60.
Previous studies have shown that human colon carcinomas contain elevated amounts of chondroitin sulfate proteoglycan (CS-PG) and hyaluronic acid, and that the major site of synthesis of these products is the host mesenchyme surrounding the tumor. These findings have led to the proposal that the abnormal formation of the tumor stroma is modulated by the neoplastic cells. The experiments of this paper were designed to explore further this complex phenomenon in an in vitro system using co-cultures of phenotypically stable human colon smooth muscle (SMC) and carcinoma cells (WiDr). The results showed a 3-5-fold stimulation of CS-PG and hyaluronic acid biosynthesis in the co-cultures as compared to the values predicted from the individual cell type cultured separately. The increase in CS-PG was not due to changes in specific activity of the precursor pool, but was rather due to a net increase in synthesis, inasmuch as it was associated with neither a stimulation of cell proliferation nor with an inhibition of intracellular breakdown. These biochemical changes were corroborated by ultrastructural studies which showed a marked deposition of proteoglycan granules in the co-cultures. Several lines of evidence indicated that the SMC were responsible for the overproduction of CS-PG: i) SMC synthesized primarily CS-PG when cultured alone, in contrast to the WiDr, which synthesized exclusively heparan sulfate proteoglycan; ii) only the SMC in co-culture stained with an antibody raised against the amino terminal peptide of a CS-PG (PG-40), structurally and immunologically related to that synthesized by the SMC; iii) the stimulation of CS-PG in SMC could be reproduced, though to a lesser extent, using medium conditioned by WiDr, whereas medium conditioned by SMC had no effects on WiDr. In conclusion this study has reproduced in vitro a tumor-associated matrix with a proteoglycan composition similar to that observed in vivo and provides further support to the concept that production of a proteoglycan-rich extracellular environment is regulated by specific tumor-host cell interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号